在中国人发现碳、硝石和硫磺混合物会爆炸后的几个世纪里,黑火药是唯一已知的炸药。在十二世纪到十九世纪之间,黑火药是火器中使用的唯一推进剂。后来,在 1845 年,德国化学家 Christian Schonbein 正在实验各种物质在硝酸和硫酸混合物中的溶解度。实验材料中有一些棉线。经过长时间的浸泡,棉花显然没有任何变化。失望的 Schonbein 把棉线放到炉子上,然后去吃饭。他走的时候,他的实验室爆炸了。他意外地发现了硝化纤维素,又称硝化棉。Schonbein 的发现鼓励了其他化学家探索硝酸盐炸药的新领域,不久之后,硝化甘油被发现了。这种化学物质本身太不稳定,无法实际使用;但是,当它被硝化纤维素吸收后,人们发现了一种强大的爆炸性明胶(后来称为炸药)。在西班牙-美国战争期间,海军试图将装有炸药的炮弹用作射弹,但事实证明这些射弹几乎没有军事价值。从气动枪发射时,它们爆炸时发出很大的声音,但效果不佳。从那时起,人们设计出了其他更有效的炸药来炸开炸药,炸药几乎完全被限制在工业用途和拆除炸药上。
Mirzakamol Ayubov是乌兹别克斯坦共和国科学院基因组学与生物信息学中心的副主任。他的研究兴趣包括棉花基因组学,转基因组学,生物信息学和标记辅助选择。Ayubov博士获得了博士学位。来自乌兹别克斯坦共和国科学院基因组学和生物信息学中心的基因组学,蛋白质组学和生物信息学。 他的主要科学兴趣是使用RNA干扰技术确定植物色素和Eskimo-1基因的功能。 通过淘汰这些基因,他能够生产几种具有早期开花,优质纤维质量和较高产量的棉线,以及许多耐药胁迫耐受性线。 他还为标记辅助选择计划做出了贡献,该计划有助于获得许多MAS品种。 Ayubov博士在国际期刊上发表了几篇科学论文。 他在2023年获得ICRA-ASIA年轻科学家创新2023。Ayubov博士获得了博士学位。来自乌兹别克斯坦共和国科学院基因组学和生物信息学中心的基因组学,蛋白质组学和生物信息学。他的主要科学兴趣是使用RNA干扰技术确定植物色素和Eskimo-1基因的功能。通过淘汰这些基因,他能够生产几种具有早期开花,优质纤维质量和较高产量的棉线,以及许多耐药胁迫耐受性线。他还为标记辅助选择计划做出了贡献,该计划有助于获得许多MAS品种。Ayubov博士在国际期刊上发表了几篇科学论文。他在2023年获得ICRA-ASIA年轻科学家创新2023。
因为纤维素和PET在化学上是完全不同的,因此对这两种聚合物的分析是通过溶液 - 气相色谱法分析是一项简单的任务。当材料(尤其是一个太大的分子而无法通过GC分析)的材料被毒死时,它会分解成较小的分子,该分子保留了原始聚合物的化学信息。这些较小的分子可以通过GC分析,产生代表父材料诊断片段的峰的模式。图1显示了从加热至750°C的棉线产生的热解色谱图(图片)15秒。当纤维素热降解时,它会产生水和二氧化碳,以及许多其他有机材料,包括醛和酮。PET降解以产生芳香剂,包括苯,苯甲酸和聚合物的低聚片段。图2显示了宠物服装线的图2,其中苯甲酸在大约11分钟时洗脱。棉花和聚酯纤维的混合物将在图1和2中显示在同一灵性图中的两个峰,因为每个聚合物都基本上是独立的。
Genic棉花,与转基因生物合作的负面一面将鼓励混合棉来增强孟加拉国的生产。尽管在孟加拉国已经释放了转基因棉花品种,但仍处于初步阶段,并且规定了孟加拉国及其维护的转基因作物及其维护等法规。将需要更多时间才能让农民收获农作物以获得经济优势。关于害虫耐药性发展的问题也与转基因棉有关。可以通过基因堆叠来减少问题,但这给基本种植质的遗传进一步提出了进一步的问题。基于提到的障碍和其他障碍,从第一个十字架开始,释放成功的商业转基因棉线可能需要长达13 - 14年的时间。即使使用DNA标记,转基因棉的商业释放也将花费时间。混合棉花在市场上很容易获得,并且可以提高产量,直到有希望的转基因线释放。杂种具有至少4种新材料中的有价值的特征,其中包括较短的持续时间,耐药性,适应能力和高产量潜力。在过去的46年中,杂种的种植在印度已经取得了成功,可以将品种带到孟加拉国进行适应。加强杂种进一步的研究正在进行创建细胞质遗传雄性无菌系。棉花,孟加拉国南部带的高诺言。不仅用于棉花的工业用途,还用于高质量的种子油和牲畜和渔业的饲料成分。
化学氮肥可以维持作物生产力,但是化学氮肥过度使用会导致经济成本和环境污染。减少氮肥使用使用的一种方法是将氮酶生物合成途径转移到非乳状植物中。Fe蛋白是氮酶的两个结构成分。NIFB是一个关键的成熟酶,它催化了结合和减少n 2的氮酶Femo-Concactor的生物合成中的第一个投入步骤。NIFB,NIFH,NIFD和NIFK的表达对于产生能够固定大气N 2的植物至关重要。在这项研究中,Paenibacillu Polymyxa Wly78的四个基因(NIFB,NIFB,NIFD和NIFK)通过CRE/LOXP重组系统组装在植物表达vector PCAMBIA1301中,从而产生重组表达vector PCAM- bia1301301-nifbhdk。然后,使用tumefaciens介导的转化将表达载体中携带的四个NIF基因共同融入了高地棉R15。通过PCR和RT-PCR选择了T 3代的纯合转基因棉线B2,B5和B17。QRT-PCR显示,NIFB,NIFH,NIFD和NIFK在类似水平的转基因棉中共表达。Western印迹分析表明,NIFB,NIFH,NIFD和NIFK是在转基因棉中共同生产的。棉花中四种关键的NIF蛋白(NIFB,NIFH,NIFD和NIFK)的共表达是工程氮酶生物合成途径的重要一步。