申请人如需确认其申请结果,请参考以下内容。只有被选中的申请人才会收到联系和通知。(外部(非基础)申请人除外,他们收到
申请人如需确认其申请结果,请参考以下内容。只有被选中的申请人才会收到联系和通知。(外部(非基础)申请人除外,他们收到
摘要:随着全球视障人士和盲人人口的稳步增长,开发低成本辅助设备的需求也随之增加。盲杖减少了人力,让人们更好地了解周围环境。此外,它还为视障人士提供了一个机会,让他们无需他人帮助即可从一个地方移动到另一个地方。该设备还可用于养老院,老年人由于视力下降,日常活动困难重重。本文旨在帮助人们“看到”周围的环境。由于人工智能领域现在取得了长足的进步,物体检测等功能变得越来越简单且计算上可行,因此本文实现了这些功能。本文专门研究了安装在棍棒上的设备所捕获的图像上的物体检测和类型,然后可以通过声音或语音的方式将统计数据传递给人。
I。虽然早期空间任务不需要精确,但现代应用,例如卫星维修和维护,可重复使用的发射车,洲际弹道导弹指导和拦截以及一些卫星到卫星通信,需要精确的位置和速度信息。全球导航卫星系统(GNSS),例如美国的全球定位系统(GPS),可用于在地球表面和低地球轨道(LEO)上进行精确定位。[1]但是,当前的GNSS系统使用少量,复杂且昂贵的卫星,这些卫星无法修复或及时更换,这意味着仅禁用少数卫星可以在大面积上破坏该系统。低接收的功率和涉及的长距离也意味着GNSS容易受到信号spoo fifg和jamming的影响。[2]面对扩散的反卫星武器和电子战系统,政府和商业实体寻求一种替代的太空导航方法可能是优先事项,该方法对对手的干扰更为强大。现有的GNSS替代方法是使用基于地面的跟踪。但是,雷达和光学信号会受到大气扭曲的影响,从而降低了位置精度。使用扩展的集成时间的持久跟踪可以克服大气变形,但这不适用于指导短时间操作。地面跟踪也受到对抗性破坏的约束。此外,单个地面站的有限视图意味着在整个轨道或轨迹中进行持续跟踪需要一个大型网络,并且在有争议或偏远地区的地球区域可能无法进行跟踪。地面数据必须从电台的分布式网络汇总,并迅速传输到车辆,在此期间,它可能会受到干扰,spoofig或其他干扰。我们引入了一种更强大的空间导航方法,该方法使用对位置纤维的自主多材料,或用大地测量的语言进行基准测试。这个
