随着人工智能生成的文本越来越像人类书写的内容,检测机器生成文本的能力变得至关重要。为了应对这一挑战,我们提出了 GPTWatermark,这是一种强大而高质量的解决方案,旨在确定一段文本是否源自特定模型。我们的方法扩展了现有的水印策略,并采用固定组设计来增强对编辑和释义攻击的鲁棒性。我们表明,我们的带水印的语言模型在生成质量、检测正确性和针对规避攻击的安全性方面享有强有力的可证明保证。在各种大型语言模型 (LLM) 和不同数据集上的实验结果表明,我们的方法实现了卓越的检测准确率和可比的复杂度生成质量,从而促进了 LLM 的负责任使用。代码可在 https://github. com/XuandongZhao/GPTWatermark 获得。
人类和机器都使用语音识别系统。各种研究人员已经开发了许多语音识别系统。例如语音识别、说话人验证和说话人识别。语音识别系统的基本阶段是预处理、特征提取、特征选择和分类。已经进行了大量工作来改进所有这些阶段以获得准确和更好的结果。本文主要关注在语音识别系统中添加机器学习。本文介绍了 ASR 的架构,有助于了解语音识别系统的基本阶段。然后重点介绍了机器学习在 ASR 中的应用。本文的一部分还介绍了各种研究人员使用支持向量机和人工神经网络所做的工作。除了这篇评论外,还介绍了使用 SVM、ELM、ANN、朴素贝叶斯和 kNN 分类器所做的工作。模拟结果表明,使用 ELM 分类器可实现最佳准确度。本文的最后一部分介绍了使用所提出的方法获得的结果,其中使用了 SVM、带有 Cuckoo 搜索算法的 ANN 和带有反向传播分类器的 ANN。重点还在于改进预处理和特征提取过程。
摘要 — 我们提出了一种新的混合系统,使用多目标遗传算法在灰度图像上自动生成和训练量子启发分类器。我们定义了一个动态适应度函数,以获得最小的电路和对看不见的数据的最高准确度,确保所提出的技术具有通用性和鲁棒性。我们通过惩罚它们的出现来最小化生成的电路在纠缠门数量方面的复杂性。我们使用两种降维方法来减小图像的大小:主成分分析 (PCA),它在个体中编码以进行优化,以及一个小型卷积自动编码器 (CAE)。将这两种方法相互比较并与经典的非线性方法进行比较,以了解它们的行为并确保分类能力归因于量子电路而不是用于降维的预处理技术。
替代树脂系统的树脂系统,2023年6月,由Sphera Solutions,Inc。为Exxonmobil技术和工程公司编写。这项研究已根据独立的第三方关键审查小组确认根据ISO 14067:2018(温室气体 - 产品的碳足迹 - 要求和定量指南)进行确认。**在这项生命周期评估(LCA)研究中评估的所有树脂均涉及成型应用中使用的类型。具体来说,环氧树脂系统是VARTM风叶片生产中使用的类型。树脂系统代表配制的树脂系统,包括任何必需的固化硬化剂或催化剂。敏感性范围是聚氨酯,乙烯基酯和环氧系统的基于文献综述和Sphera Solutions,Inc。的数据。
[15] Watanabe Tomonori等人:低温工程39,553(2004)。[16] Iimi Akira等人:低温工程42,42(2007)。[17] A.P.Malozemoff和Y. Yamada:超导100年,第11章“第二代HTS Wire”,P689(CRC出版社,2011年)。和Izumi Teruro,Yanagi Nagato:血浆和核融合杂志93,222(2017)。大量的制造方法,包括兔子底物,mod(化学溶液方法)和真空蒸发方法。 [18] http:// www。istec。或。JP/Tape-Wire/Labo-Tape-Wire。html,使用PLD方法和MOD方法(化学溶液方法)的金属棒的高性质。[19] T. Haugan等。,自然430,867(2004)。[20] Y. Yamada等。,应用。物理。Lett。 87,132502(2005)。 [21] H. Tobita等。 ,超级条件。 SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Lett。87,132502(2005)。[21] H. Tobita等。,超级条件。SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。SCI。技术。25,062002(2012)。[22] Matsumoto Kaname:应用物理77,19(2008)。[23] Yamada Shigeru:应用物理93,206(2024)。[24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。[25] Miyata Noboru:材料37,361(1988)。[26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。,科学。Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Rep。11,8176(2021)。[28] R. Hiwatari等。,血浆融合res。14,1305047(2019)。[29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。[30] D. uglietti,超越。SCI。 技术。 32,053001(2019)。SCI。技术。32,053001(2019)。
† 令和 2 年 3 月 19 日 令和 2 年度大会で行われる予定であった学术奨励赏研究の目的 * 东京理科大学理工学部応用生物科学科 Department of Applied Biological Science, Professor of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510,日本
纳米技术和纳米粒子是一个不断发展的领域,由于其在各个领域有无数的应用,在过去的几十年里引起了化学家和科学家的极大兴趣[1]。纳米尺寸的粒子称为纳米粒子。它们的尺寸范围从1到100纳米。一纳米等于基本单位(米)的十亿分之一。对这种粒子的研究被称为纳米技术。纳米粒子由于其独特的物理和化学性质而具有大量的应用。它们具有不同的形状,如球体、立方体、棒状、板状等,但是,纳米粒子仍然有优点和缺点,并在此背景下进行讨论[2]。它们在不同领域有各种应用
