数据库回答复杂问题。ml是人工智能的一个子集,它使用了从经验中学习和改进的计算算法。4,11以其最简单的形式,这涉及使用一组现实世界数据来预测或估计结果。2,4,11这些数据集代表了机器然后能够使用模式认可来从或“学习”来研究和从“学习”中进行推论,以自己做出决定。4这样的结论与实际结果的测试集进行了比较,以量化算法的准确性。随着训练集中的数据的增长,测试重复的数量增加,类似于“体验式学习”,机器的算法变得更加准确和预测性。逻辑回归(LR)代表ML的最原始形式,并且经常在文献中应用。6,7但是,回归分析是静态的,不是预先的,这意味着它不会自动调节以从复杂的数据关系中“学习”,尤其是在添加更多数据输入时。这项研究代表了我们所知的第一次尝试在运动医学文献中应用复杂的ML算法,其中LR与不同的ML算法进行了比较。在这项研究中,从2000年到2017年的玩家志术,伤害和性能指标是最初的训练集,从这些训练集中,机器可以从该训练中学到的关系,以预测带有测试套件的类似概况的未来玩家的最可能结果。此外,可以正确预测损伤的解剖位置可以预防目标。我们假设,尽管有复杂的情况 - iOS会导致DL受伤和放置,但在历史损伤数据中接受培训的ML模型可能能够评估有效性高的MLB参与者的未来伤害风险。我们认为,在所有临床情况下,现代ML算法将比原始LR分析更具有代表性的模型。For the purpose of leveraging available analytics to permit data- driven injury prevention strategies and informed decisions, the objective of this study of MLB players was to (1) char- acterize the epidemiology of injury trends on the DL from 2000 to 2017, (2) determine the validity of an ML model in predicting the injury risk for the subsequent year and ana- tomic injury location, and (3) compare the performance of modern ML算法与LR分析。
• 保持人群控制,以便 EMS 人员快速轻松地进入 • 与 EMS 人员会面并将他们引导至场地/受伤地点 • 获取书面报告以作记录;完成后必须向运动训练师提供一份副本