非洲棕榈象鼻虫,Rhynchophorus phoenicis F.(鞘翅目:Curculionidae)构成了尼日利亚尼日尔三角洲饮食中的重要组成部分。这项研究旨在确定从Toru-Orua社区中的食品供应商购买的加工grubs(蒸,干,油炸和新鲜)的近端成分和微生物学质量。近距离组成的确定遵循官方和分析化学品(AOAC)建议的官方方法,而微生物负荷由总板数确定。蒸的g的水分含量最高,为15%,而新鲜水分的水分最少为9.3%。蒸g的灰分含量最高,为11.47%,而新鲜的灰分最少为4.73%。新鲜g的原油最高为41.75%,而新鲜蛋白质的粗蛋白质最少为30.13%。蒸grubs的原油含量最高,为18.07%,而新鲜的原油最少为13.7%。蒸的和炸的g的原油含量最高,为10.93%,而新鲜脂肪含量最少为2.8%。蒸的g的水分含量最高,为28.35%,而干grubs的水分含量最小为20.66%。总的异养细菌计数范围为8.5 x 10 2 cfu/g - 3.7 x 10 6 cfu/g。真菌计数范围为2.2 x 10 2-3.4 x 10 3 cfu/g。微生物研究表明铜绿假单胞菌,大肠杆菌和金黄色葡萄球菌是grubs上的常见微生物。建议对此类即食食品进行频繁的微生物质量检查,并建议对食品供应商进行公共启蒙运动,以确保在加工/处理,储存和消费期间为消费者提供食品安全。
租赁公司(由银行或汽车制造商拥有)是实现这一目标的关键利益相关者。今天租赁占新车注册的一半以上3。最大的租赁公司拥有数百万辆汽车的车队。这意味着它们在定义欧盟向零发射运输系统的过渡的速度方面起着关键作用。由于其较大的车队规模,但他们的短期所有权期(三到四年)也对进入二手车市场的汽车类型产生了至关重要的影响。,但最近的一项T&E研究表明,这些租赁公司并没有充当他们声称的绿色领导人。他们只是在吸收电动汽车时跟随市场。4同时,研究表明他们正在促进假绿色解决方案。5
对于大多数航空和运输流量的脱碳,电气化是不可行的,欧盟应优先使用RFNBOS(非生物学起源的可再生燃料,也就是绿色氢和衍生的电子燃料)。用额外的风和太阳能产生RFNBO具有多个优点:这些解决方案更可扩展 - 同时最小化环境影响 - 以满足2050年对RFNBOS的需求激增(与生物燃料和化石燃料不同)。同时,投资RFNBOS使欧盟能够离开 - 主要进口 - 化石燃料。它基于风,电子,合成过程等欧洲工业冠军的优势。最后但并非最不重要的一点是,RFNBO的可持续性规则将兑现真正的零碳燃料的承诺,而没有许多参与蓝色氢的不确定性。这就是为什么应优先考虑欧洲和国家法规和财政支持以支持RFNBOS的供应(在运输中,航空和运输中)的原因。
在干旱地区,过度用水威胁着农业可持续性和整体生计。 必须最大程度地减少用水量解决这些问题。 日期棕榈(Phoenix dactylifera L.)是象征性的干旱地区和主要的水消费者作物。 将当前的灌溉系统定制到新的水,效率高效的系统中可以帮助应对这种作物的水消耗。 与植物相关的微生物群落对于农业可持续性至关重要,可以提高受水稀缺威胁的地区的用水效率。 因此,当将农业系统适应当前的全球变化设置时,应认真考虑这些社区。 但是,目前尚无有关这些修饰对日期棕榈微生物群落的影响的信息。 这项研究强调了不同土壤水系统(洪水和滴灌,自然条件和废弃农场)对不同土壤深度处的棕榈根真菌群落的影响。 调查结果表明,土壤水系统对真菌群落有明显影响,并且滴灌减少了真菌的多样性,但增加了丰富的羊膜菌根真菌。 我们表明,在所有采样深度上,这些效果都是相似的。 最后,由于根建筑是吸水的主要决定因素,因此我们在这些不同的土壤水系统下揭示了根建筑的不同行为至160 cm的深度。在干旱地区,过度用水威胁着农业可持续性和整体生计。必须最大程度地减少用水量解决这些问题。日期棕榈(Phoenix dactylifera L.)是象征性的干旱地区和主要的水消费者作物。将当前的灌溉系统定制到新的水,效率高效的系统中可以帮助应对这种作物的水消耗。与植物相关的微生物群落对于农业可持续性至关重要,可以提高受水稀缺威胁的地区的用水效率。因此,当将农业系统适应当前的全球变化设置时,应认真考虑这些社区。但是,目前尚无有关这些修饰对日期棕榈微生物群落的影响的信息。这项研究强调了不同土壤水系统(洪水和滴灌,自然条件和废弃农场)对不同土壤深度处的棕榈根真菌群落的影响。调查结果表明,土壤水系统对真菌群落有明显影响,并且滴灌减少了真菌的多样性,但增加了丰富的羊膜菌根真菌。我们表明,在所有采样深度上,这些效果都是相似的。最后,由于根建筑是吸水的主要决定因素,因此我们在这些不同的土壤水系统下揭示了根建筑的不同行为至160 cm的深度。这项研究的结果为棕榈根建筑和相关的真菌群落提供了新的见解,尤其是在供水危机的背景下,这推动了农业系统的适应性。
绿色棕榈的种植是绿洲农业系统的支柱,构成了干旱和半干旱地区的真正发展来源,因为它的果实富含糖和各种产品,对人群的日常生活必不可少。在乍得,自六十年代以来,与疾病,害虫和性能较差的耕种技术有关,日期生产已经下降,环境因素是腓尼加文化降低以及不安全感以及农村出埃及记现象的主要原因。为了根据乍得的日期棕榈(Palm)评估绿洲农业生态系统的潜力,在撒哈拉和萨赫勒(Sahara)和萨赫尔(Sahel)的日期农民中进行了民族植物学调查。日期棕榈的品种主要在该国北部撒哈拉植物,在该国允许丰富而多元化的生存农业(市场园艺,果树,谷物和饲料),其中不包括生产中化学输入的使用。我们的研究使得有可能通过经验选择并乘以分支乘以200多个品种的重要遗传多样性。在撒哈拉沙漠中,约会棕榈品种每年只有一个水果生产季节,其生产力令人满意,可接受的价格和农民对种植实践有很好的了解。在与Sahelian地区相对应的国家中部,在盆地中也发现了绿洲农业系统。气候条件有利于两个生产季节,以及从第一个水果生产季节(4月和5月)出售的日期收入大于第二生产季节(6月至9月)的收入。加强当地知识和棕榈树林的扩展,使增加产量和收入成为可能,并将有助于粮食安全以及在乍得和萨赫勒国家更普遍地维持人口。
摘要这项研究调查了机器学习技术在检测油棕叶中疾病的应用,并利用来自Tanah Laut地区种植园的1,119张图像的数据集。数据集包含488例患病和631个健康的叶片样品,这些样品经过精心裁剪以隔离叶片区域,并在域专家的帮助下标记。用于特征提取,同时考虑了实验室和RGB颜色空间,以及Haralick纹理特征,每个像素总共有11个功能。采用了尺寸和选择相关特征,应用主成分分析(PCA)和随机森林方法。随后使用支持向量机(SVM)进行叶片健康状况的分类,并使用准确性,精度,召回和F1得分指标评估模型性能,这些均来自混淆矩阵。研究发现,PCA和随机森林显着提高了模型性能,从而提高了区分健康和患病叶片的能力。这些发现为在油棕种植园中开发自动疾病检测系统的发展提供了宝贵的见解,并在精确农业中使用了潜在的应用。此外,结果提出了进一步研究植物疾病诊断的途径,强调了先进的机器学习技术在增强作物管理和支持可持续农业实践中的作用。
NDPE实施报告框架。一种报告工具,提供了对整个供应链公司全部供应基础NDPE承诺的共同和一致的进度的看法。它旨在帮助公司系统地了解和跟踪在其棕榈油供应链中提供NDPE承诺方面的进步。
我们建议在现场直播培训日之前完成按需课程。此模块是培训的强制性部分,以便成功完成它。
要求基于2023年2月10日1023年2月10日的委员会法规(EU)2023/1185,补充欧洲议会的2018/2001号指令(EU)和理事会,通过确定为液体燃料的液体燃料和液体储蓄的温室气体排放的最低限度,并通过确定液体燃料的液体燃料,并通过确定液体燃料的最低限度,并为GEADOLICES提供了补充,并为GEADOLICES提供了备用的碳燃料,并为GEADOLOCY提供了限制,并为GEADOLICE提供了额外的碳燃料,并为GEADOLISE提供了补充的GENERISE GENHOUSES GENOLY GENERIATS,非生物出源的燃料和回收的碳燃料(以下称委员会对GHG RFNBOS的规定)。授权法规的法律依据在艺术中规定。红色II的28(3)。 除此之外,还考虑了欧洲委员会在生活文件“问答”中发布的其他指南“用于RFNBOS和RCF的认证” 2,以开发该系统文档。红色II的28(3)。除此之外,还考虑了欧洲委员会在生活文件“问答”中发布的其他指南“用于RFNBOS和RCF的认证” 2,以开发该系统文档。
昆虫肠道内的微生物群对其宿主起有益的作用,例如促进消化和从饮食中提取能量。非洲棕榈象鼻虫(APW)生活在内部,并以高木质素树干为食。因此,他们的胆量可以藏有大量降落木质素的微生物社区。在这项研究中,我们旨在探索APW幼虫肠道内的细菌群落,特别是在各个肠道段中木质素降解的可能性方面,作为确定采矿细菌细菌木质素降解酶的生存能力的第一步,以使生物体生物素生物素生物素生物群生物体生物群生物体至生物群生物群至生物群生物群至生物素的生物分解。从APW幼虫的前身,中肠和后肠上提取细菌宏基因组DNA,并使用Illumina Miseq平台对16S rRNA基因的V3 -V4高变量区域进行了测序。对生成的数据进行了分析和分类分类,以鉴定肠道群落内的不同细菌系统型累积和每个肠道细分市场。然后,我们确定了每个幼虫肠室内与木质素降解相关的细菌的存在,多样性和丰度,作为建议木质素降解最多的肠段的基础。所有序列均分类并属于细菌王国。FIREICITES(54.3%)和蛋白杆菌(42.5%)是肠内最优势的门,随后是杆菌(1.7%)和静脉细胞杆菌(1.4%)。前身和中肠有许多类似的属,而后肠似乎是独一无二的。肠球菌,左骨杆菌,乳酸菌,Shimwellia,Megasphaera,Klebsiella,klebsiella,pectinatus,沙门氏菌,Lelliotia和肠杆菌构成了所有肠内最具幼虫的属。总体而言,含有21个属的总肠道细菌的29.5%是木质素降解者,主要是在企业和蛋白质细菌的门中发现的(分别为56.8和39.5%),然后在肌动杆菌(2.5%)和细菌(2.5%)和细菌(1.1%)中适度。最丰富的木质氨基利因属是Levilactobacillus(46.4%),克雷伯氏菌(22.9%),肠杆菌(10.7%),乳杆菌(5.9%)(5.9%),柑橘类杆菌(2.2%),corynenebacterium(1.8%),paucilactocillus(1.8%)(1.8%)(1.8%)(1.8%)(1.8%,1.8%,1.8%,综合综合综合症,综合体)在不同肠道室中发现了不同量的细菌(1.1%)和白细胞(1.0%)。前肢具有最多样化和最高的木质素降解系统型,