图 3:检测效率和死时间引起的入射光子统计数据失真。具有泊松统计数据 Poisson( k | µT ) 的入射状态,µT = 80(实心方块),由于有限量子效率 η = 0 . 7(空心方块)而有效衰减,见公式 (10)。输出分布保持为泊松分布,具有泊松( m | ηµT )。对于具有可瘫痪死时间 t dead 的探测器,输出统计数据由公式控制。 (11)给出分布泊松(k | ηµT exp(−ηµt dead)),即它仍然保持泊松分布,新的均值为ηµT exp(−ηµt dead)(实心圆)。对于具有非瘫痪死时间t dead 的探测器,输出分布不再是泊松分布,而是亚泊松分布,参见公式(13)(空心圆)。
德克萨斯州最适宜种植的圣诞树品种包括弗吉尼亚松、阿富汗松、东部红柏、短叶松、亚利桑那柏和莱兰柏。美国劳工统计局估计,2019 年德克萨斯州圣诞树产业在美国南部平均年就业和工资排名第二,仅次于佛罗里达州,在全国排名第四,仅次于加利福尼亚州、佛罗里达州和俄勒冈州(美国劳工统计局,2020 年)。由于目前可用的信息有限,本报告研究了圣诞树产业对德克萨斯州经济的贡献。方法为了估计德克萨斯州圣诞树产业对该州经济的贡献,采用了 IMPLAN(规划影响分析)投入产出建模系统(IMPLAN Group,2017)。IMPLAN 被广泛用于进行经济模拟(Steinback,1999 年、Prato 和 Hey,2006 年、Joshi 等人,2017 年)。
严重交界性大疱性表皮松解症是一种罕见的遗传性产后致死性皮肤病,主要由 LAMB3 基因中的无义/过早终止密码子 (PTC) 序列变体引起。LAMB3 编码 LAMB3,即表皮 e 真皮皮肤锚定层粘连蛋白 332 的 b 亚基。PTC mRNA 的大多数翻译读段都会产生截短的、无功能的蛋白质,而内源性 PTC 读通机制会产生最低水平和不足的全长蛋白质。传统的翻译读通诱导药物会放大内源性 PTC 读通;然而,翻译读通诱导药物要么具有蛋白毒性,要么是非选择性的。核糖体编辑是一种更具选择性且毒性较小的策略。该技术确定了核糖体蛋白 L35/uL29(即 RpL35)和 RpL35 配体可再利用药物青蒿琥酯和阿扎那韦作为增加全长 LAMB3 产量的分子工具。为了评估活细胞中的配体活性,我们通过双荧光素酶报告基因检测监测了青蒿琥酯和阿扎那韦的治疗。青蒿琥酯治疗后全长 LAMB3 的产量水平增加高达 200%,阿扎那韦治疗后增加高达 150%,在降低药物剂量的情况下与 RpL35 配体联合治疗后增加高达 170%,而不相关的 PTC 报告基因无反应。RpL35 配体在选择性增加全长 LAMB3 方面的生物活性证明为补充严重交界性大疱性表皮松解症中的 LAMB3 的替代靶向治疗途径提供了基础。
摘要 — 大脑微运动是导致植入式神经接口失败的主要原因。有两种方法可以有效减少大脑微运动和组织损伤:(i)缩小植入式装置占地面积和(ii)选择柔性材料作为装置基板。为了满足这些要求,在本文中,我们使用 COMSOL Multiphysics 中的有限元法执行了两组建模。首先,我们对不同尺寸的不同材料(从硬材料(例如硅)到非常软的材料(例如 PDMS))的性能进行建模,以找到微探针的最佳尺寸和材料。对于装置尺寸优化,主要自由度是厚度,而最小柄宽度和长度分别取决于记录位置和目标记录点。基于不同基板对具有不同厚度(50 - 200 μm)和固定柄宽度(100 µm)的装置进行建模,我们表明,基于聚酰亚胺的微探针的安全系数为 5 到 15,最大冯·米塞斯应力为 248-770 MPa。此外,模拟表明,厚度为 50 μm 的聚酰亚胺基微探针,其安全系数为 5,应力为 248 MPa,在尺寸和材料方面提供了最佳解决方案。其次,为了分析设备形状因子,我们根据获得的最佳设计对不同的布局进行建模,发现最佳布局的冯·米塞斯应力为 134.123 MPa,用途广泛,适合用作微探针,尤其是用于缓解脑微运动的影响。关键词——脑植入装置、脑微运动、设备建模、小型化、机械灵活性、形状因子。