植物雄性不育 (MS) 是指植物无法产生功能性花药、花粉或雄配子。开发 MS 系是植物育种计划中最重要的挑战之一,因为建立 MS 系是 F1 杂交生产的主要目标。出于这些原因,已在几种具有经济价值的物种中开发了 MS 系,特别是在园艺作物和观赏植物中。多年来,MS 已通过许多不同的技术实现,从基于交叉介导的传统育种方法的方法到基于遗传学和基因组学知识的先进设备,再到基于基因组编辑 (GE) 的最先进分子技术。GE 方法,特别是由 CRISPR/Cas 相关工具介导的基因敲除,已经产生了灵活而成功的战略思想,用于改变关键基因的功能,调节包括 MS 在内的许多生物过程。这些精准育种技术耗时较少,可通过积累有利等位基因加速新遗传变异的产生,能够显著改变生物过程,从而提高品种开发绕过有性杂交的潜在效率。本文的主要目的是概述植物雄性不育方面的见解和进展,重点介绍最近通过靶向特定核基因座诱导 MS 的新型育种 GE 应用。本文总结了近期 CRISPR 技术的潜在机制和主要作物和观赏植物的相对成功应用。本文将讨论 CRISPR/Cas 系统在 MS 突变体生产中的未来挑战和新潜在应用以及其他潜在机会,例如通过瞬时转化系统生成 CRISPR 编辑的无 DNA 和跨代基因编辑以引入所需等位基因和精准育种策略。
研究表明,热带森林正在以惊人的速度破坏(Hartshorn,1989; Sabogal,1992; Legesse Negash,1995; Demel Teketay,1996)。森林砍伐已导致森林覆盖量的下降,全球和国家一级生物多样性的丧失(Skole and Tucker,1993; Epa,1997; Kumar,1997)。贫穷和缺乏替代的生计一直是森林破坏的驱动力。埃塞俄比亚的森林遗传资源保护策略(2002年)和关于森林发展,保护与利用的宣言(2007年)已将森林砍伐视为对埃塞俄比亚森林生物多样性的主要威胁。由于人口不断增长,对燃料木材的需求不断增加,森林中的非法定居点,伐木和非法贸易的扩大是造成森林资源损失的主要因素,因此农业用地的森林砍伐。森林覆盖范围的减少和森林遗传资源的丧失对保护森林生物多样性构成了严重威胁。
b'MSC植物学是一项为期两年的课程,有助于对生物学主题有更好,更深入的了解。该课程具有实用性和理论结构。在实验室中给学生提供课程,以更好地了解植物生活。该课程旨在涵盖诸如微生物学,植物学,植物解剖学,分子生物学等的选修和核心主题。追求硕士学位植物学的过程还可以帮助学生在诸如兽医,农艺学,细胞学,林业等学科方面进行专业化。
I.申请以下一页(强制性的所有字段)中给出的格式严格形式II。完成简历。iii。第10级标记表IV。第10级通行证V. 12类标记表VI。第12类通过证书VII。毕业标记表/成绩单VIII。毕业学位证书IX。毕业后标记表/成绩单X.毕业后学位证书xi。经验证书(AS&Phise -Phiceable)XII。无反对证书(如果当前使用,则基本上需要AS&Phieerable)XIII。在适用的任何地方,从CGPA到百分比的转换因子。xiv。博士学位。学位证书。(AS和如果适用)XV。博士标记表。(AS&如果适用)xvi。sc/st/obc不适用的非冰淇淋层/pH证书。xvii。出版物副本(如果有)。xviii。任何其他相关文件。那些未能在面试日期提到的文件的候选人,他们的候选人有可能被取消。4。访谈只有具有必要资格的候选人才能考虑。5。广告宣传的帖子数可能会增加或减少,具体取决于
随着全球人口的增长和对粮食的需求不断增加,农业生产面临着巨大的压力。与此同时,气候变化和资源限制加剧了这些挑战,进一步凸显了对可持续农业实践的需求。为了解决这些复杂的问题,植物科学领域正在经历一场技术革命。人工智能 (AI)、计算机视觉和机器人技术的快速发展正在重新定义植物的研究方式和农业实践的管理方式。从高通量表型到精准农业和实时监测,这些技术正在显著提高效率和准确性,为更具弹性和可持续性的农业系统奠定基础。本研究主题汇集了开创性的研究,以展示人工智能如何推动植物科学的发展并为现代农业提供创新解决方案。
Causal organism, Symptoms, Etiology and Control Measures of Following Diseases: Leaf Curl OF Papaya, Bunchy Top of Banana, CitrusCanker, Angular Leaf spot of Cotton, Downy Mildew of Bajra, Grain Smut of Sorghum, Stem Rust of Wheat, Tikka Disease of Groundnut, Wilt of Pigeon Pea, Red Rot of Sugarcane, Sandal Spike disease of Mycoplasma.
由安德烈·梅特罗(AndréMétro)撰写并于1955年出版的第一版《种植的桉树》(Eucalypts)在过去的二十年中一直在许多国家 /地区使用。在那个时期,在建立和种植技术领域都有重大发展。种植园报告的面积增加了五倍,现在至少达到了至少400万公顷,分布在澳大利亚和东印度属的自然分布区域以外的90个国家 /地区。桉树对开发世界的重要性越来越重要,其中八十个国家报告了他们对该属的兴趣。他们有很多用途,用于锯木。牙髓,木材基面板,杆和柱子以及环境和便利设施的种植。他们在生产可再生的燃木资源中起着特别重要的作用,它们为特定的重力和体积生产提供了极好的结合。一种或其他一种桉树对从半渗透到冷气或高山的广泛气候的适应性是它们作为Exotics取得显着成功的原因之一。
遗传和表观遗传调控生物标记在植物抗逆分子机制和作物育种方法中起着至关重要的作用。由于不利的生长条件阻碍了作物产量和全球粮食安全,养活不断增长的全球人口是一项艰巨的任务。为了很好地解开上述机制,科学家们不得不整合多个植物研究领域,因此,他们必须具备丰富的生物信息学知识和工具来管理大数据集。从本质上讲,本主题中包含的常规文章涉及农民和股东面临的现代问题。为了解决这些问题,科学家们采用了多方面的研究方法,涵盖植物生理学、分子生物学、遗传学、表观遗传学和组学等各个领域,以及最先进的植物科学和尖端方法,这些方法由复杂的技术和先进的方法提供支持,包括全基因组关联研究 (GWAS) 和表观遗传学方法,以揭示植物对高温、盐分、干旱和病原体侵袭等胁迫(生物和非生物)的耐受机制。因此,可以将进化的分子技术投入到未来的作物育种策略中,以提高生产力并产生更能抵御环境挑战和抵抗病原体侵袭的新品种。值得注意的是,Kumar 等人通过两种不同的方法揭示了遗传可塑性的分子基础对水稻种植中不同环境条件的关键重要性。本专题汇集了新发现和有用方法来促进植物科学研究。它阐明了表观遗传学变化(例如 DNA 甲基化、组蛋白(去)乙酰化和其他翻译后修饰 (PTM))在基因调控(抑制或诱导)中的作用,以及组学(基因组学、表观基因组学、转录组学、代谢组学、离子组学和蛋白质组学)在检测应激反应基因中的作用。使用
沼气植物的部署固有地取决于地理考虑。这项研究主张将地理数据与人工智能算法(称为Geoai)整合在一起,作为一种可靠的可靠方法,用于精确预期这些最佳位置。考虑到上述,这项研究努力预测为在农业中实施甘蔗沼气植物的最佳地点。通过利用涵盖物理,生物和人类方面的地理数据,以及使用六种不同的分类算法的利用(CART,C4.5,C5.0,Random Forest,XGBoost和GBM),性能比较变得很重要。训练阶段特别针对圣保罗的状态,由于其植物的浓度升高,其最有效的模型随后应用于Goiás状态。随机森林算法实现的杰出性能强调了其在描述Goiás甘蔗沼气植物部署的有利地点的功效。这种方法论方法在简化决策过程,描绘有利于甘蔗生产的沼气生产的地区有望,从而优化了生物量利用,并同时减轻了环境影响和安装支出。GEOAI的融合不仅促进了可再生能源的扩散,而且还为缓解气候变化而做出了实质性的贡献,从而促进了更广泛的全球能量转变。
