该项目的目标是在农作物中建立合成遗传单元。具有完全合成基因组的植物可以可持续地提供丰富的产品和服务,从食品到材料、药物等等。迈向合成植物基因组的关键第一步是开发构建模块:在植物细胞中建立合成遗传单元,特别是合成染色体和合成叶绿体。该项目旨在设计、构建、交付和维护可在活体植物中存活的合成染色体和合成叶绿体。一个成功的项目不仅将展示完全合成植物基因组道路上的关键一步,而且本身将使我们的主要作物更具生产力、更具弹性和更可持续。该项目将联合合成生物学和植物生物学方面的专业知识,催化下一代植物合成生物学,释放植物的新功能以满足人类未来的需求。
©2024 Corteva Agriscienciencienciencience B.V ..保留所有权利。本文档受版权法和《艺术》的保护。2001/18指令的25。 本文件和材料仅供当局使用,目的是由Corteva Agriscience Belgium B.V.(Corteva Agriscience Group of Companies),其分支机构或其被许可人提交,并且仅在Corteva Agriencience Bergium B.V.2001/18指令的25。本文件和材料仅供当局使用,目的是由Corteva Agriscience Belgium B.V.(Corteva Agriscience Group of Companies),其分支机构或其被许可人提交,并且仅在Corteva Agriencience Bergium B.V.本文档中描述或随附的知识产权,信息和材料是Corteva Agrisciencience Belgium B.V ..的专有,通过提交本文件,Corteva Agrisciencience比利时B.V.不授予本文档中描述的信息或知识产权的任何一方或实体。
谁可以参加 培训计划每批最多可容纳 25 名参与者。 第二年及以上的博士生将被优先考虑。 需要具备 Crispr 以及植物分子生物学的基本知识。 与基因组编辑 EFC 项目相关的科学家、博士后和研究学者将优先考虑。 2025 年 2 月 3 日至 7 日 – 博士后研究员和早期职业科学家。(https://forms.gle/wMJEeaJzhwYviARp7) 2025 年 2 月 10 日至 14 日——博士生(第 2 年及以上)和研究学者(具有至少 6 个月的经验)。(https://forms.gle/RMmeh2VYRTAhiEKx7) 旅行和住宿 参与者必须承担自己的旅行、住宿和伙食费用。从住宿地点到培训地点的当地旅行安排由参与者自行安排。主办方将承担培训期间的工作午餐。
基础模型是对大量数据进行预训练的大型模型。通常可以以最小的努力来适应各种下游任务。但是,由于基础模型通常是在从互联网中提出的图像或文本上进行预培训的,因此它们在植物表型等植物域中的性能受到质疑。此外,完全调整基础模型是耗时的,需要高计算能力。本文研究了植物表型设置和任务的基础模型的有效适应。我们对三个基础模型(MAE,Dino和Dinov2)进行了大量实验,对三个必需的植物表型任务:叶子计数,实例阶段和疾病分类。特别是,预先训练的骨干被冷冻,同时评估了两种不同的调整方法,即适配器调整(使用lora)和解码器调整。实验结果表明,基础模型可以充分地适应植物表型任务,从而产生与针对每个任务的最先进的模型(SOTA)模型相似的性能。尽管在不同任务上表现出很高的传递能力,但在某些情况下,精细调整的基础模型的表现比SOTA任务特定的模型稍差,这需要进一步研究。
(学分:理论3)(教学时间 - 4)课程目标:了解微生物学的基础知识并了解环境中的作用。提供对微生物世界,微生物的基本结构和功能,代谢,营养,其多样性,生理学以及与环境和人类健康的关系的基本理解。具有隔离和操纵条件的实用技能。确保学生了解微生物的结构和功能。单元 - I(10小时)微生物多样性:微生物学,历史和微生物学范围,一般特征和分类的古细菌,细菌,真菌,藻类,原生动物,病毒,病毒和王室的基础。原核生物和真核生物之间的差异。单位II(15小时)细菌的超微结构:细胞结构 - 细菌及其生物合成的细胞壁,细胞包膜 - 胶囊和粘液层,细胞附加物 - pili,鞭毛,鞭毛和脂肪,细胞膜,细胞膜,包含体,质粒DNA和质子DNA和染色体和染色体DNA。细菌遗传学 - 结合,转导(广义和专业化)和转化。单位-V(10小时)微生物控制:灭菌,消毒,反杂质,熏蒸。物理控制:温度(潮湿的热量,高压灭菌,干热,热空气烤箱和焚化炉),干燥,渗透压,辐射,紫外线,电力,超声波,超声波波,过滤。化学控制:防腐剂和消毒剂(卤素,酒精,气态灭菌)课程学习结果(CLO):学生将能够1。2。单元-III(15小时)显微镜:染色 - 染色(简单和微分)显微镜的原理和类型 - 光学显微镜(明亮场,暗场,相位对比,荧光显微镜)和电子显微镜的原理,原理和申请营养类型,培养基类型的制备,微生物的培养,微生物生长曲线,病毒复制:裂解和裂解性周期,微生物的隔离,保存和维持微生物,有氧和厌氧的细菌培养,生物效应以及生物因素的作用以及生物因素对生长的生长。定义了微生物学的科学,其发展和在人类福利中的重要性。描述自发产生的历史概念以及执行
单位-VI:植物的内部组织:开花植物的组织学和解剖学:组织 - 类型,结构和功能;分生物:永久组织 - 简单而复杂的组织。组织系统 - 类型,结构和功能;表皮,地面和血管组织系统。二核和单子叶植物的解剖结构 - 根,茎和叶,双子茎和双子根的二级生长。单位-VII:植物生态学:生态适应,继任和生态服务:简介。植物群落和生态适应:氢植物,叶肉和叶叶植物。植物继承。生态服务固定,氧气释放以及如何维持生态功能。UNIT-VIII: PLANT PHYSIOLOGY: Transport in Plants : Means of Transport- Diffusion, Facilitated Diffusion, Passive symports and antiports, Active Transport, Comparison of Different Transport Processes, Plant-Water Relations- Water Potential, Osmosis, Plasmolysis, Imbibition, Long Distance Transport of Water- Water Movement up a Plant, Root Pressure, Transpiration pull, Transpiration- Opening and Closing of Stomata, Transpiration and光合作用 - 矿物营养素的折衷吸收和运输 - 矿物离子的摄取,矿物离子的易位,韧皮部的运输:从源到水槽的流动 - 压力流量或质量流量假设。酶:化学反应,酶转化,酶作用的性质,影响酶活性,温度和pH值的因素,底物的浓度,酶的分类和命名法,副因素。矿物质营养:研究植物的矿物质需求,必不可少的矿物元素 - 必不可少的标准,大量营养素,微量营养素,宏观的作用,宏观和微观 - 养分 - 基本元素的缺乏症状,微生酸的毒性,微量营养素的毒性,微量营养素的毒性,元素吸收的机制,肯定的元素,土壤的吸收机制 - 土壤的综合元素 - 土壤疾病,疾病 - 土壤的综合元素,源于土壤的疾病,源自氮循环,生物氮固定,共生氮固定,结节形成。Photosynthesis in Higher Plants : Early Experiments, Site of Photosynthesis, Pigments Involved in Photosynthesis, Light Reaction, The Electron Transport-Splitting of Water, Cyclic and Noncyclic Photo-phosphorylation, Chemiosmotic Hypothesis, Biosynthetic phase- The Primary Acceptor of CO2, The Calvin Cycle, The C4 Pathway, Photorespiration, Factors affecting Photosynthesis.植物的呼吸:细胞呼吸,糖酵解,发酵,有氧呼吸 - 三羧酸循环,电子传输系统(ETS)和氧化磷酸化,呼吸平衡表,两性途径,两性途径,呼吸商,呼吸商。植物生长和发育:植物生长,生长阶段,生长速率,生长条件,分化,去分化和重新分化,发育,植物生长,调节剂 - 植物生长调节剂的生理影响,生长素,gibberellins,gibberellins,cytokinins,entokinins,ethytokinins,ethylene,乙烯,超酸种子病毒不相同,光疗法,veroperiodism,Veroperionisp。
现在比以往任何时候都更明显地对气候弹性的需求更为明显,气候变化的阴影对我们的未来产生了巨大的不确定性。这种紧迫性在农业中显着相交,在农业中,实现粮食安全的双重目标以扩大全球人口和采用可持续生产实践至关重要。可持续农业的核心是对营养物质的有效利用,尤其是氮,鉴于其对农作物生产力和环境福祉的深远影响。由于气候变化,天气不足,温度升高以及影响农作物吸收的养分吸收和肥料的有效性,养分管理的复杂性被气候变化所增强。因此,优化养分管理超越了提高产量;这是关于强化农业反对气候诱发的逆境。在农业方面的最新技术进步已经在提高养分效率方面的归零,这标志着在升级气候和环境挑战的研究中,研究中的关键时刻。研究现在必须集中于在不断发展的天气条件下不同作物的精确需求,同时优先考虑土壤和节水,并降低温室气体的排放。从经济上讲,使这些创新负担得起和可扩展的农民至关重要。但是,此类创新的可伸缩性,成本和农民的可及性,尤其是在不太发达地区的,需要仔细考虑。将这些技术适应各种农作物和气候提出了其他挑战。这篇社论封装了最近发现对营养效率和气候弹性的本质和含义,主张未来,高级技术符合可持续的农业以以环保的方式确保食品。Bhavya等人的文章。对CO 2水平升高如何影响水稻种植有细微的理解,特别关注产量,质量和营养含量。在增加的CO 2条件下,耕种者的数量有所增加,但
微生物与植物之间的相互作用已成为微生物学和植物生物学的重要研究领域。非生物应力,包括干旱,盐度和重金属,对全球植物生长产生了实质性影响。这些压力源,无论是单独或结合发生的,都会破坏营养的吸收并阻碍植物的整体发展(Mushtaq等,2023)。然而,有益的微生物在增强对这种非生物挑战的植物弹性方面表现出了潜力(Cardarelli等,2022; El-Shamy等,2022)。居住在根际和植物圈中的某些微生物可以促进植物水和养分,同时提供防止有害环境毒素的保护(Degani,2021; Redondo等,2022)。过去十年见证了由测序和毛质技术的进步驱动的显着步伐,从而揭示了在非生物胁迫下构成植物 - 微生物相互作用的复杂机制。这些细微的关系正在逐渐被解密,为预测和调节策略铺平道路。利用植物 - 微生物相互作用来支持植物适应非生物压力,在农业生产力,生物修复策略和生态可持续性中具有变革性的潜力。这项研究的努力旨在彰显微生物在增强植物抵抗非生物胁迫方面的重要作用。调查还深入研究了根间微生物群落对植物更广泛健康的复杂影响。Qi等。Qi等。在这个研究主题中,十项学术贡献深入研究了多种机制,通过这些机制,微生物可以帮助植物适应环境爆发,从而维护其生长和生存。总的来说,这些文章提供了有关微生物如何促进生态系统功能和植物福祉的全面观点。响应紧急市场需求和严重的非生物压力,增强植物生产和生存已成为研究的核心重点。利用RNA干扰(RNAI)技术来构建油酸去饱和酶(FAD2)基因的IHPRNA植物表达载体,从而导致油酸含量升高,并降低了菜籽中亚油酸和亚麻酸的水平。值得注意的是,根际微生物群落作为遗传评估的指标
iii。以特定原因确定以下内容。5 x 3 = 15 m D.微生物实验室中使用的重要仪器的原理和应用。
1植物医疗系,安登国立大学,安东斯36729,大韩民国; smvahsan@gmail.com 2 Applied Biosciences,Kyungpook国立大学,Daegu 41566,大韩民国; inmamumrassel@gmail.com(m.i.-u.-h.); ashim@knu.ac.kr(a.k.d.)3植物与土壤科学系,美国德克萨斯州科技大学基因组学研究所,德克萨斯理工大学,德克萨斯州拉伯克,美国德克萨斯州79409; mrahman@bsmrau.edu.bd 4 4602,杜姆基杜姆基Patuakhali科学技术大学昆虫学系8602; mahiimam@pstu.ac.bd 5 5 Kumho Life Science Laboratory,Chonnam国立大学,Gwangju 61186,大韩民国; ncpaulcnu@gmail.com 6大加工大学大麻生物技术学院,朝鲜共和国安东斯36729 *通信:hwchoi@anu@anu.ac.kr3植物与土壤科学系,美国德克萨斯州科技大学基因组学研究所,德克萨斯理工大学,德克萨斯州拉伯克,美国德克萨斯州79409; mrahman@bsmrau.edu.bd 4 4602,杜姆基杜姆基Patuakhali科学技术大学昆虫学系8602; mahiimam@pstu.ac.bd 5 5 Kumho Life Science Laboratory,Chonnam国立大学,Gwangju 61186,大韩民国; ncpaulcnu@gmail.com 6大加工大学大麻生物技术学院,朝鲜共和国安东斯36729 *通信:hwchoi@anu@anu.ac.kr