国际骨科科学杂志2024; 10(2):241-245 E-ISSN:2395-1958 P-SISSN:2706-6630 IJOS 2024; 10(2):241-245©2024 IJOS https://www.orthopaper.com收到:02-03-2024接受:08-04-04-2024 Oussama Mohamed Arakeep骨科外科,骨科外科,医学系,Tanta University,Tanta University,Tanta Universition,Tanta tanda tanta tanta tanta tanta tanta tanta tanta tantA塔塔大学,埃及塔塔大学,埃及艾哈迈德·艾尔·埃尔·泰特塔特骨科外科系,医学院,塔塔大学,埃及塔塔大学,埃及的埃尔德·埃尔·戴维尔·埃尔·戴维尔·埃尔·戴德·埃尔·道外科系,埃及医学院,埃及医学院,埃及医学院,埃及医学院:埃及塔塔大学
目的 本研究旨在评估一种新型人工智能 (AI) 模型在骨质疏松患者中识别具有更高骨矿物质密度 (BMD) 和更高拉出力 (POF) 的优化椎弓根螺钉轨迹的能力。方法使用 3D 图形搜索和基于 AI 的有限元分析模型开发了一种创新的椎弓根螺钉轨迹规划系统(称为 Bone's Trajectory)。回顾性分析了 21 名老年骨质疏松患者术前 CT 扫描。AI 模型自动计算替代椎弓根轨迹的数量、轨迹 BMD 和估计的 L3-5 POF。记录优化轨迹的最高 BMD 和最高 POF,并将其与 AO 标准轨迹进行比较。结果 患者平均年龄为 69.6 ± 7.8 岁,平均椎体 BMD 为 55.9 ± 17.1 mg/ml。在 L3–5 的两侧,优化轨迹的 BMD 和 POF 明显高于 AO 标准轨迹(p < 0.05)。平均而言,优化轨迹螺钉的 POF 至少比 AO 轨迹螺钉增加 2.0 倍。结论 新型 AI 模型在选择 BMD 和 POF 高于 AO 标准轨迹的优化椎弓根轨迹方面表现良好。
目的 本研究旨在评估一种新型人工智能 (AI) 模型在骨质疏松患者中识别具有更高骨矿物质密度 (BMD) 和更高拉出力 (POF) 的优化椎弓根螺钉轨迹的能力。方法 使用 3D 图形搜索和基于 AI 的有限元分析模型开发了一种创新的椎弓根螺钉轨迹规划系统,称为骨轨迹。回顾性分析了 21 名老年骨质疏松患者的术前 CT 扫描。AI 模型自动计算替代椎弓根轨迹的数量、轨迹 BMD 和 L3-5 的估计 POF。记录优化轨迹的最高 BMD 和最高 POF,并与 AO 标准轨迹进行比较。结果 患者平均年龄为 69.6 ± 7.8 岁,椎体平均 BMD 为 55.9 ± 17.1 mg/ml。在 L3–5 两侧,优化轨迹的 BMD 和 POF 均显著高于 AO 标准轨迹(p < 0.05)。平均而言,优化轨迹螺钉的 POF 与 AO 轨迹螺钉相比至少增加了 2.0 倍。结论 新型 AI 模型在选择比 AO 标准轨迹具有更高 BMD 和 POF 的优化椎弓根轨迹方面表现良好。