我们的实验数据集包括对玻璃(图 S2)和硅(图 S3)基板上支撑的薄膜的测量。对于玻璃和硅基板上支撑的薄膜的线加热器,𝑃 rms 通常分别设置为 2 mW 和 15 mW。由于基板的选择及其热导率不同,每种情况下的实验不确定性也不同。在表征低热导率薄膜(例如共轭聚合物)时,热导率较高的基板可提供更好的热对比度。因此,我们分别考虑了玻璃和硅基板上支撑的薄膜温升的实验误差 ±100 mK 和 ±25 mK;以及通过椭圆偏振法确定玻璃和硅基板上支撑的薄膜厚度(𝑑)的误差分别为 ±5% 和 ±2.5%。然后根据 SciPy 中实现的正交距离回归 (ODR) 拟合实验数据,该回归考虑了两个变量的不确定性 (Δ𝑇 AC
Park Systems Corporation 是纳米级显微镜和计量解决方案制造领域的行业领导者。其全面的产品系列包括原子力显微镜 (AFM)、白光干涉仪 (WLI)、纳米红外光谱 (NanoIR) 和成像光谱椭圆偏振仪 (ISE) 系统。公司对卓越的承诺促成了多项突破性创新的开发,包括真正的非接触式成像、3D 计量和全自动 AFM 系统,这些创新能够满足研究和工业需求。Park Systems 产品在科学研究、纳米工程、半导体制造和质量保证领域具有广泛的应用潜力。公司持续的奉献精神使 Park Systems 成为领先半导体公司、知名科研大学和国家实验室最青睐的纳米计量产品供应商。
摘要:硫族相变材料 (PCM) 在非挥发性的非晶态和结晶态之间具有很大的光学特性差异,引起了人们对其在长期接近零功耗的超紧凑光子集成电路中的应用的浓厚兴趣。然而,在过去十年中,PCM 集成光子器件和网络受到各种常用 PCM 本身巨大光学损耗的困扰。在本文中,我们重点研究了一种新兴低损耗相变材料 Sb 2 Se 3 在硅光子平台上的沉积、特性和单片集成。蒸发的 Sb-Se 薄膜的非晶相和结晶相之间的折射率对比度被优化到 0.823,而椭圆偏振法测得的消光系数保持小于 10 − 5。当集成在硅波导上时,非晶薄膜引入的传播损耗可以忽略不计。结晶后,磁控溅射Sb-Se贴片覆盖硅波导的传播损耗低至0.019 dB/µm,而热蒸发贴片覆盖硅波导的传播损耗低于0.036 dB/µm。
在电磁干扰屏蔽、天线和电化学能存储与转换电极等应用中,MXene 薄膜需要具有高电导率。由于采用基于酸蚀的合成方法,因此很难分解化学成分和薄片尺寸等因素对电阻率的相对重要性。为了了解内在和外在因素对宏观电子传输特性的贡献,对 Ti y Nb 2- y CT x 系统中的固溶体进行了控制成分和结构参数的系统研究。特别是,我们研究了金属(M)位成分、薄片尺寸和 d 间距对宏观传输的不同作用。硬 x 射线光电子能谱和光谱椭圆偏振法揭示了 M 位合金化引起的电子结构变化。与光谱结果一致,低温和室温电导率以及有效载流子迁移率与 Ti 含量相关,而薄片尺寸和 d 间距的影响在低温传输中最为突出。该结果为设计和制造具有广泛电导率的 MXene 提供了指导。
摘要:我们提出了一种自下而上的成功方法,设计了一种通用的等离子体增强原子层沉积 (PEALD) 超循环配方,以在 150°C 的相对低温下生长具有可调成分的高质量铟镓锌氧化物 (IGZO) 薄膜。原位实时椭圆偏振表征与非原位互补技术相结合,已用于优化薄膜的沉积工艺和质量,方法是识别和解决生长挑战,例如氧化程度、成核延迟或元素组成。开发的超循环方法通过调整超循环过程中的子循环比,可以轻松控制目标成分。与其他产生非晶态薄膜的低温沉积技术相比,我们在 150°C 下的 PEALD-IGZO 工艺可产生近乎非晶态的纳米晶态薄膜。通过超循环 PEALD 方法在低温下制备 IGZO 薄膜可以控制厚度、成分和电性能,同时防止热诱导偏析。关键词:IGZO、PEALD、超循环、XPS 深度剖析、电流密度
摘要 光学微波动能电感探测器 (MKID) 的典型材料是金属,在可见光和近红外光中的自然吸收率约为 30-50%。为了达到高吸收效率 (90-100%),必须将 KID 嵌入光学堆栈中。我们展示了一种针对 60 nm TiN 薄膜的光学堆栈设计。光学堆栈被建模为传输线的各段,其中每个段的参数与各层的光学特性有关。我们从光谱椭圆偏振测量中推导出 TiN 薄膜的复介电常数。设计的光学堆栈针对宽带吸收进行了优化,从顶部(照明侧)到底部由以下组成:85 nm SiO 2、60 nm TiN、23 nm SiO 2 和 100 nm 厚的 Al 镜。我们展示了该堆栈的模型吸收和反射,其在 400 nm 至 1550 nm 范围内的吸收率 > 80%,在 500 nm 至 800 nm 范围内的吸收率接近 1%。我们使用商用分光光度计测量了该堆栈的透射和反射。结果与模型非常吻合。
摘要 利用反应脉冲直流磁控溅射技术进行了一项实验研究,探索了在 623 K (± 5K) 下沉积的半导体氧化钇薄膜的光谱和结构特性。根据 x 射线衍射和透射电子显微镜测量的结果,一氧化钇很可能在 β-Y 2 O 3 和 α-Y 2 O 3 之间的过渡区中形成,并伴有晶体 Y 2 O 3 。由于 4d 和 5s 轨道之间的能量分离低和/或相应轨道亚能级的自旋状态不同,一氧化物的稳定性在热力学意义上最有可能受晶体大小的自身限制。与金属氧化物立方结构相比,这种行为会导致晶体结构扭曲,并且还会影响纳米晶/非晶相的排列。此外,椭圆偏振光谱法表明半导体氧化钇的形成特征比结晶的 Y 2 O 3 更显著,且大多为非晶态。我们的目的是利用目前的研究结果,加深对不寻常价态 (2+) 钇的形成动力学/条件的理解。
纳米结构的应用受到限制,因为事实证明,在制造之后修改其静态属性过于困难。[19] 为了解决这一重大问题并开辟在纳米尺度上动态控制光的途径,研究正转向具有可调特性的动态系统,例如基于相变材料[20–24]、掺杂的金属氧化物纳米晶体[25]和石墨烯[26–28]。受极强的氧化还原可调性的推动[29],我们最近引入了导电聚合物作为动态等离子体的新材料平台。[30] 导电聚合物以前曾被用来调节由金等传统金属制成的纳米结构的等离子体响应。 [31–34] 我们证明了高导电聚合物聚(3,4-乙烯二氧噻吩:硫酸盐)(PEDOT:Sulf)的纳米盘无需任何金属纳米结构即可用作动态等离子体纳米天线,聚合物本身由于其高移动性和大密度的极化子电荷载体(2.6×1021cm-3,由椭圆偏振法测定)而成为等离子体材料。[30] 令人兴奋的是,这些纳米天线可以通过化学调节聚合物的氧化还原状态来完全打开和关闭,这极大地调节了材料的电导率和光学性质。[30] 然而,调节过程基于暴露在气体和液体中,而未来的系统将需要更方便、更快捷的电调节。
研究了快速热退火对射频溅射系统沉积的高 k HfO 2 超薄膜结构和电学性能的影响。分别在氧气和氮气环境下研究了薄膜特性以获得最佳快速热退火温度,以获得作为 MOS 器件结构的最佳电学效果。使用傅里叶变换红外光谱 (FT-IR) 详细研究了温度诱导退火对 HfO 2 /Si 界面的影响。分别通过椭圆偏振仪、XRD 和 AFM 研究了薄膜厚度、成分和微观结构,并显示了退火对这些参数的影响。采用 Si/HfO 2 /Si MOS 电容器结构研究了退火电介质薄膜的 I-V 和 C-V 特性。结果表明,在氮气环境下采用快速热退火 (RTA) 的 HfO 2 /Si 堆栈比在氧气环境下表现出更好的物理和电学性能。结果表明,RTA 改善了 HfO 2 /Si 的界面特性和 HfO 2 超薄膜的致密化。在氮气和氧气中分别以 700 C 退火后,沉积的薄膜为非晶态和正交晶系。我们发现,氮气退火样品的等效氧化物厚度、界面态密度、电容-电压滞后和漏电流均有所降低;此外,在正电压偏置和温度应力下,电荷俘获也几乎可以忽略不计。本文对结果进行了介绍和讨论。2011 Elsevier BV 保留所有权利。
预防微生物感染是一项全球性挑战。有效的抗菌涂层可在接触后迅速杀死微生物,有助于最大限度地减少微生物的传播。然而,它们的可扩展合成具有挑战性。这项工作展示了自消毒纳米薄膜的可扩展合成和表征,用于医院相关表面的后期改造。它们的抗菌作用基于超带电阳离子表面膜和带负电的细菌膜之间的电荷相互作用。在棉布(防护服)、丁腈橡胶(防护手套)和玻璃表面(桌子、屏幕)上,使用光引发本体聚合风干的 [2-(甲基丙烯酰氧基) 乙基] 三甲基氯化铵薄膜来增强其带电性,并通过流动电位测量进行研究。通过光谱成像椭圆偏振法和 X 射线光电子能谱法的组合,可以看到以阳离子季胺基团为主的 6 纳米厚涂层。涂层表面的抗菌体外评估表明,在不到 5 分钟的时间内,细菌数量减少了约 4 个对数。共聚焦激光扫描显微镜和活死染色证实了表面诱导的细菌杀灭作用。该涂层的一系列兼容材料及其快速杀菌活性可以对抗细菌的表面传播,并可能有助于遏制传染病的传播。它在环境条件下的合成有望融入工业流程。