摘要:磁性半导体可能很快会提高微电子的能源效率,但具有这些双重特性的材料仍未得到充分探索。在此,我们报告了一种新的磁性和半导体材料 MnSnN 2 的计算预测和实现,通过薄膜组合溅射。掠入射广角 X 射线散射和实验室 X 射线衍射研究表明,MnSnN 2 表现出具有阳离子无序性的纤锌矿状晶体结构。这种新材料具有较宽的成分公差,单相区域范围为 20% < Mn/(Mn + Sn) < 65%。光谱椭圆偏振法确定光吸收起始点为 1 eV,与计算预测的 1.2 eV 带隙一致。电阻率测量与温度的关系支持了 MnSnN 2 的半导体性质。霍尔效应测量表明载流子密度与温度呈弱负相关,这表明电荷传输机制比原始半导体更复杂。磁化率测量表明 MnSnN 2 具有低温磁有序转变(≈ 10 K)和强反铁磁相关性。这一发现与块体阳离子有序 MnSiN 2 和 MnGeN 2 形成对比,在之前的研究中,它们在 400 K 以上表现出反铁磁有序。为了探究这种差异的起源,我们对阳离子有序和阳离子无序的 MnSnN 2 进行了蒙特卡罗模拟。他们发现阳离子无序降低了相对于有序相的磁转变温度。除了发现一种新化合物外,这项工作还表明,未来的努力可以利用阳离子(无)序来调整半导体材料中的磁转变,从而精确控制微电子特性。■ 简介
通过 Bosch 工艺在硅中蚀刻高深宽比结构对于微机电系统 (MEMS) 和硅通孔 (TSV) 制造等现代技术至关重要。由于蚀刻时间长,该工艺对掩模选择性的要求非常高,并且事实证明 Al 2 O 3 硬掩模在这方面非常合适,因为与传统的 SiO 2 或抗蚀剂掩模相比,它提供了高得多的选择性。在这项工作中,我们结合使用扫描电子显微镜 (SEM)、光谱椭圆偏振仪 (SE) 和 X 射线光电子能谱 (XPS) 深度剖析来仔细研究 Al 2 O 3 掩模蚀刻机理,从而探究超高选择性的来源。我们证明,通过增加钝化步骤时间,在 Al 2 O 3 上会形成更厚的氟碳聚合物层,然后以微小的平均蚀刻速率 ~0.01 nm/min 去除 Al 2 O 3。 XPS 深度剖析显示,在采用 Bosch 工艺进行深反应离子蚀刻 (DRIE) 的过程中,聚合物和 Al 2 O 3 之间会形成一层 AlF x 层。由于 AlF x 不挥发,因此需要溅射才能去除。如果聚合物层足够厚,可以衰减进入的离子,使其能量不足以导致 AlF x 解吸(例如当使用较长的钝化时间时),则掩模不会被侵蚀。通过研究不同次数 DRIE 循环后的表面,我们还获得了有关 AlF x 的形成速率以及 DRIE 工艺过程中 Al 2 O 3 和聚合物厚度变化的信息。这些发现进一步扩展了对 DRIE 的认识,并可帮助工艺工程师相应地调整工艺。
由 HBr/O 2 组成的等离子体通常用于硅蚀刻工艺,如栅极蚀刻工艺或浅沟槽隔离蚀刻,由于人们对此类化学反应中的硅蚀刻相当了解,因此它成为研究等离子体脉冲对气相和等离子体-表面相互作用的影响的最佳选择。目标是了解连续等离子体和脉冲等离子体之间的根本区别,以及等离子体产生的变化如何影响最终的图案转移。在论文 I 中,我们展示了等离子体脉冲对离子通量和离子能量的强大影响。1 结果显示,占空比 (dc) 而不是脉冲频率对这些参数有显著影响。在本文中,我们重点研究等离子体脉冲对 HBr/O 2 等离子体中的蚀刻机制和图案转移的影响。先前的实验已经证明脉冲等离子体中等离子体引起的损伤有所减少,2 – 4 通常通过使用扫描电子显微镜 (SEM) 成像、椭圆偏振测量和 X 射线光电子能谱 (XPS) 对侧壁钝化层 (SPL) 进行形貌分析。许多作者已经研究了 HBr/O 2 等离子体对硅和 SiO 2 的蚀刻机理。5 – 13 下面总结了 Si 和 SiO 2 蚀刻的基本机理,其中考虑了原料气中极小比例的氧气。含溴、氢和(较少量)氧的离子撞击硅表面、分解、破坏键并形成富含卤素的非晶层,也称为反应蚀刻层 (REL),其中含有 H、Br 和一些 O 原子。非晶层的厚度和成分会根据离子能量、压力和原料气流量而变化。由于氢原子比其他粒子小得多,它们可以更深地渗透到硅层中,然后硅原子可以因碰撞而解吸,或可以融入挥发性物质,如 SiBr 4。含氢分子如 SiH 2 Br 2 的挥发性更强,13 但硅蚀刻并不
电子邮件:stephane.calvez@laas.fr 简介 原子层沉积 (ALD) 纳米厚的 Al 2 O 3 层或其他电介质层已被证实是一种有效的方法,可用于创建敏感材料封装层,防止其因周围大气中的水分和氧气含量而发生降解 [1,2]。另外,由氧气(分别是水)引起的半导体材料向绝缘体的腐蚀转变,称为干(湿)氧化,通常用于微电子和光子器件以及集成电路的制造,作为引入实现晶圆上光学路由 [3–6] 和/或电连接所需的电和/或光子限制的一种方式。特别是在硅光子器件制造中,后者的工艺通常涉及将硅层在高温或等离子体中暴露于水/氧气中,并通过厚度大于 100 nm 的 SiN x 掩模实现局部氧化保护 [3,4]。在此背景下,我们在此报告了使用 ALD 沉积的 Al 2 O 3 作为节省材料的氧化屏障以防止硅晶片的等离子诱导或高温热氧化的能力的研究。样品制备通过热 ALD 在硅晶片上沉积具有纳米厚度的 Al 2 O 3 薄膜。低压热 ALD 沉积由重复循环组成,每个循环包括 300 ms 的三甲胺铝 (TMA) 脉冲,然后在 N 2 下进行 2800 ms 的吹扫,150 ms 的水蒸气脉冲,以及在 N 2 下进行 6700 ms 的第二次吹扫。这里测试了两个沉积温度,90°C 和 150°C。使用可变角度光谱椭圆偏振法(使用 Accurion EP4 系统)测量所得层厚度。图 1 显示了 Al 2 O 3 厚度随沉积循环次数变化的记录。在 0 个循环时,测量到的厚度对应于天然氧化硅(测量到约 2 纳米)。在 15 个沉积循环之前,成核开始以异质生长(见图 1 插图)。超过 15 个循环后,沉积厚度以每循环生长率 (GPC) 0.19 纳米/循环线性增加,并且与沉积温度的依赖性较弱。随后使用紫外光刻和湿法蚀刻对 Al 2 O 3 涂层样品进行图案化,以获得具有 Al 2 O 3 保护和未保护硅区域的样品。使用稀磷酸(去离子水/H 3 PO 4 (37%) 1/1 溶液)在精确的 67°C 温度下进行层蚀刻,蚀刻速率为 30 纳米/分钟。分别用水和丙酮进行冲洗和清洁。测试了两种类型的氧化:干热氧化和等离子氧化。干热氧化方案包括在 5L/min 的 O 2 流量下从 30°C 开始线性升温(8.2°C/min),然后在 9L/min 的 O 2 流量下以 1000°C 进行恒温步骤,然后在 5L/min 的 O 2 流量下以 -16.3°C/min 的温度衰减。低压 O 2 等离子体氧化在 Sentech Si-500 设备中进行,使用 30 分钟的重复处理,其中样品受到 O 2 等离子体处理,RF 功率为 800W,基板温度保持在 100°C 以下。在这两种情况下,通过成像光谱椭圆偏振法测量处理过的样品的保护区和未保护区的氧化厚度。图 2 左侧显示,如果 Al 2 O 3 厚度大于 ~9 nm(45 个循环),则干氧化不会进行,而对于更薄的覆盖层,干氧化会减少。SEM 横截面(如图 2 中的插图所示)进一步证实了这一观察结果。类似地,观察到等离子体氧化导致氧化物生长遵循平方根定律的时间依赖性(Deal 和 Grove 模型 [7]),但对于(30 次循环)Al 2 O 3 涂层样品部分,其氧化速率降低。
这些材料的厚度[13,14]、孔隙率[15]、多晶性[16]和生长形貌都会影响关键的设计参数,如质量密度(ρ)和热导率(κ)。例如,质量密度是爆炸材料爆轰性能的主要参数,因为它与由此产生的传播速度成正比。[17,18]另一方面,热导率可以为药物成分的无定形稳定性提供关键见解,这最终决定了它们的生物利用度。[3,19,20]对于薄膜热障,质量密度和热导率都起着重要作用,因为它们通常是被动的并受到瞬态热载荷。 [8] 考虑到工程表面的状况、[12] 微观缺陷、[21] 通往非晶态的新途径[20] 和新型沉积技术[22] 预计将共同作用以控制有机薄膜的微观结构,需要对热物理性质进行局部测量,以指导其合成和生长。然而,对有机薄膜而言,质量密度的局部测量是一个巨大的挑战。例如,掠入射 X 射线反射、光谱椭圆偏振术和横截面扫描电子显微镜要么需要超光滑表面[23]、有机物透明的波长[24],要么需要可能损坏熔点低的样品的离子暴露。[25,26] 另一方面,重量法测量质量和体积会得出整个样本的平均密度,而没有关于微观结构的信息。显然,需要一种能够非破坏性地探测有机薄膜局部质量密度变化的测量技术。频域热反射 (FDTR) 是一种成熟的泵探测测量技术,可用于测定块体和薄膜材料的热性质,探测尺寸与激光光斑尺寸相当(通常约为 10 μ m)。[27–29] 使用 FDTR,可以定期提取材料的热导率和体积热容量 (ρcp)。然后可以使用测得的体积热容量和体积比热容 (cp) 的假设来确定质量密度。为了测量有机薄膜的质量密度,
研究与专业经历 Giuseppe Valerio Bianco 于 2006 年以满分 (110/110) 优异成绩获得意大利巴里大学化学系“化学”荣誉学位,并于 2010 年获得巴里大学“创新材料化学”博士学位。他曾在微电子与微系统研究所 (CNR-IMM, Lecce Unit) 担任研究员两年 (2010-2012),并在无机方法与等离子体研究所 (CNR-IMIP, Bari Unit) 担任研究员三年 (2012-2014)。自 2015 年起,他一直在 CNR-NANOTEC 纳米技术研究所担任研究科学家。 对科学的贡献 他的主要科学活动和专业知识,由 55 篇国际期刊出版物 (h-index=19, SCOPUS)、n 证明。 1 项专利、23 篇会议论文集和 60 多篇会议论文(亦受邀),包括:(1) 用于合成 1D(半导体纳米线)、2D(石墨烯和过渡金属二硫属化物)和 3D(金属纳米颗粒)纳米结构材料的 CVD、等离子增强 CVD 和 PVD 方法;(2) 用于材料和纳米材料表面化学处理的湿法和等离子工艺。他是 CNR-Graphene Factory 门户网站普利亚石墨烯实验室部门的科学负责人,该门户网站负责传播石墨烯和二维材料的研究。正在进行的研究项目 2020 年“GRA4TEC,用于技术应用的石墨烯”,由华为技术有限公司(加拿大)资助。职位:首席研究员(PI);2020 年“GraFoMi,用于光子和微波器件的工程石墨烯”,由巴里理工大学资助。角色:首席研究员 (PI);2020 年“PHEMTRONICS,主动光学相变等离子体跨维度系统,实现飞焦耳和飞秒超宽带自适应可重构设备”,由 H2020-EU.1.2.1 资助。角色:共同 PI。已完成的研究项目 2019-2020 年“COPPER”由混合和有机太阳能中心 (CHOSE,意大利罗马) 资助,用于将大面积 CVD 石墨烯用作有机光伏器件中的透明导电层。 2018-2019 “用于屏蔽和光束控制的光学透明和可重构微波设备”,由美国陆军 RDECOM 资助,contratto W911NF-18-1-0263,角色:Co-PI;2016-2018 “TWINFUSYON,用于提高光电生物传感多功能纳米系统研究能力的孪生”,由 EC H2020-TWINN-2015(692034)资助。角色:研究团队成员;2013-2016 “MEM4WIN,用于零能耗建筑的先进、可调节和经济实惠的四层玻璃窗的超薄玻璃膜”,由 EC FP7-2012-NMP-ENV- ENERGY-ICT-EeB(314578)资助。角色:研究团队成员;2010-2013 “SENS&MICROLAB,创新传感器和普利亚大区资助的“航空微系统”项目(POFESR 2007-2013)。角色:研究团队成员;2010-2012“NIM-NIL,通过纳米压印光刻技术大面积制造 3D 负折射率超材料”由 EC-FP7-NMP-2008-SMALL-2-228637 资助。角色:研究团队成员;2008-2010 “NANOCHARM,利用椭圆偏振和偏振技术进行多功能纳米材料表征”由 EC FP7-NMP-2007-CSA-1 (218570) 资助。角色:研究团队成员。
12:15 pm 展览厅午餐* ................................................................................................................................ 西厅(CC) 12:25 pm 磁性界面和纳米结构部门商务会议 ..............................................................................121(CC) 12:25 pm 等离子体科学和技术部门 Coburn 和 Winters 评审会议(仅限邀请) .. 124(CC) 12:30 pm 5K 跑步颁奖 ............................................................................................................................. 西大厅(CC) 12:30 pm AVS 总裁午餐会(仅限邀请) ............................................................................................. 会议室 4(H) 12:30 pm PacSurf 委员会会议和午餐 ............................................................................................................. 格雷科会议室(H) 12:30 pm 专业发展:成为同行评审员:您需要了解的一切午餐*...... 会员中心:118(CC) 1:00 pm 建议实践会议和午餐 ............................................................................................. 会议室1(H)下午 3:00 多样性、公平性和包容性开放市政厅 ............................................................................................. 会员中心:118(CC)下午 3:45 会议茶歇*和参观展览 ............................................................................................. Wast Hall(CC)下午 4:30 参展商招待会(仅限邀请) ............................................................................................. 西厅,展位号 703(CC)下午 5:15 等离子科学与技术部门商务会议和 2024 年 PSTD 颁奖典礼:学生海报、Coburn 和 Winters、年轻研究员和等离子奖 ................................................................................ 124(CC)下午 6:30 AVS 颁奖典礼和招待会* ............................................................................................. 宴会厅 BC(CC)上午 7:00 至下午 5:00 会员中心休息室 ............................................................................................. 会员中心:118(CC)上午 7:30 至下午 5:00 注册时间................................................................................................................ 西大厅(CC) 上午 8:30 至下午 5:00 短期课程 ................................................................................................................ 注册 西大厅(CC) 上午 10:00 至下午 4:30 职业中心 ................................................................................................................ 西厅,展位号 711(CC) 上午 10:00 至下午 4:30 设备展览 ............................................................................................................. 西厅(CC) 上午 10:00 至下午 6:00 海报设置和观看 ................................................................................................................ 中央大厅 (CC) 2024 年 11 月 7 日星期四 上午 7:00 AVS 研讨会和会议工作组早餐 ........................................................................................ 会议室 5(H) 上午 7:30 表面科学光谱编辑委员会早餐 ........................................................................................ 会议室 6(H) 上午 8:00 制造科学与技术技术组执行委员会会议和早餐 ............................................................................................................................. 会议室 2(H) 上午 8:00 Medard W. Welch 奖讲座:加州大学河滨分校的 Francisco Zaera“金属薄膜原子层沉积的表面化学” ............................................................. 115(CC) 上午 8:00 光谱椭圆偏振技术组执行委员会会议和早餐 ...... 会议室 3(H) 上午 10:00 会议咖啡休息*和参观展览 ............................................................................................. 西厅 CC)下午 12:30 2025 AVS 程序委员会会议和午餐........................................................................... 会议室 4 (H) 下午 12:15 展览厅午餐*/闭幕式 ................................................................................................................... 西厅 (CC) 下午 12:30 AVS 商务会议 ........................................................................................................................ 115 (CC) 下午 12:30 曲线拟合 XPS 曲线拟合最佳实践 - 午餐学习* ............................................................. 会员中心:118 (CC) 下午 3:15 庆祝 Robert J Madix 及其对表面科学和接待的贡献 ............................................. 120 (CC) 下午 4:30 海报会议 ............................................................................................................................. 中央厅 (CC) 下午 6:30 2024/2025 AVS 计划委员会招待会和晚宴 ............................................................................. 大 F (H) 上午 7:00-下午 5:00 会员中心休息室 ............................................................................................................. 会员中心:118 (CC) 上午 7:30-5:00下午 注册时间 ................................................................................................................ 西大厅(CC) 上午 8:30 - 下午 5:00 短期课程 ................................................................................................................ 注册 西大厅(CC) 上午 10:00 - 下午 2:30 职业中心 ................................................................................................................ 西厅,展位#711(CC) 上午 10:00 - 下午 2:30 设备展览 .............................................................................................................西厅 (CC) 上午 10:00 至下午 4:00 海报设置和观看 ...................................................................................................... 中央厅 (CC) 下午 4:30 至晚上 8:00 海报会议 ................................................................................................................ 中央厅 (CC) 2024 年 11 月 8 日星期五 上午 10:00 表面科学部门 Mort Traum 颁奖典礼 ............................................................................. 120 (CC) 上午 10:15 上午会议休息* ...................................................................................................................... 圆形大厅 (CC) 上午 7:30 至上午 9:30 职业中心 ...................................................................................................................... 西大厅 (CC) 上午 7:30 至上午 9:30 注册时间 ................................................................................................................ 西大厅 (CC) *售完即止