3.3.6.4 有效载荷热调节 ...................................... 25 太空基 OTV ...................................................... 27 3.4.1 空间站运行和支持约束 ...................................... 27 3.4.1.1 机组人员支持 ........................................ 27 3.4.1.2 功耗 ...................................................... 27 3.4.1.3 质量考虑 ................................................ 27 3.4.1.4 地面通信 ................................................ 27 3.4.1.5 舱外活动/自动维护和保养 ........................ 27 3.4.2 OMV 对 OTV 的支持 ........................................ 27 3.4.2.1 发射 ...................................................... 27 3.4.2.2 回收 ...................................................... 27 3.4.2.3 推进剂补给 ................................................ 28 3.4.2.4 推进剂排空 ................................................ 28 3.4.2.5 OMV 接口 ...................................... 28 3.4.2.6 OMV 在轨服务 ...................................... 28 3.4.3 返回 OTV 轨道包络 ...................................... 28 3.4.3.1 STS 包络 ...................................... 28 3.4.3.2 空间站轨道包络 ...................................... 28 OTV 设计 ...................................................... 31 3.5.1 性能裕度 ................................................ 31 3.5.2 设计裕度 ................................................ 32 3.5.3 可靠性 ................................................ 32 3.5.4 冗余 ................................................ 32 3.5.5 人员评级 ................................................ 32 3.5.6 子系统设计标准 ........................................ 32 3.5.6.1 结构 ................................................ 32 3.5.8.1.1 疲劳......................................... 32 3.5.6.1.2 设计安全系数 ...................................... 33 3.5.6.1.3 验证试验 .............................................. 33 3.5.6.1.4 极限安全系数应用 ........................ 33 3.5.6.1.5 组合载荷 ...... ................................. 34 3.5.6.1.6 极限载荷 ...................................... 34 3.5.6.1.7 允许的机械性能 ........................ 35 3.5.6.1.8 气动弹性 ...................................... 35 3.5.6.1.9 地面处理约束 ...................................... 35 3.5.6.1.10 蒙皮壁板屈曲 ...................................... 35 3.5.6.1.11 应力腐蚀 ...................................... 35 3.5.6.1.12 抗损伤 ...................................... 35 3.5.5.1.13 错位和公差 ...................................... 35 3.5.6.1.14 断裂控制.., ...................................... 36 3.5.6.2 气动制动子系统设计标准 ............................. 36 3.5.6.3 推进 ...................................... 36 3.5.6.3.1 主推进系统 ................................ 36 3.5.6.3.1.1 火箭发动机 ................................ 36 3.5.6.3.1.2 主推进系统推进剂储存和输送系统 ........................ 36
内部: - 与空中客车 D&S 协调和管理 ILS/ISS 流程环境 - EuroDrone 和 FCAS 的焦点,负责 ILS/ISS 概念定义 - 为军用飞机服务主管提供未来战略问题支持的顾问
根据 NASA 探索技术开发计划,NASA 正在与能源部 (DOE) 合作开展一个项目,以完善裂变动力系统 (FPS) 技术。该项目的主要目标是开发可行的系统选项,以支持 NASA 未来任务对核动力的需求。FPS 项目的主要目标如下:1) 开发满足 NASA 预期任务功率要求的 FPS 概念,成本合理,且比其他选项更具优势。2) 为 FPS 设计概念建立基于硬件的技术基础,降低总体开发风险。3) 降低 FPS 的成本不确定性,提高飞行系统成本估算的可信度。4) 生成关键产品,使 NASA 决策者能够将 FPS 视为飞行开发的首选方案。为了实现这些目标,FPS 项目有两个主要目标:概念定义和风险降低。在概念定义方面,NASA 和 DOE 正在进行权衡研究、定义需求、开发分析工具和制定系统概念。典型的 FPS 由反应堆、屏蔽、功率转换、散热以及功率管理和分配 (PMAD) 组成。进行研究以确定每个子系统所需的设计参数,使系统能够以合理的成本和开发风险满足要求。降低风险提供了在实验室测试环境中评估技术的方法。构建和测试非核硬件原型以验证性能预期、获得操作经验并解决设计不确定性。概念定义和风险降低活动高度耦合,产品交错,因此一个的结果可以影响另一个。例如,电磁泵测试的数据可用于锚定反应堆热工水力分析代码。然后可以使用该代码来设计类似飞行的主要热传输回路。由此产生的热传输设计可以为更高保真度的地面测试回路提供基础,以验证代码。
通过电气工程和基于海洋的绿色技术的专业知识,包括混合动力,燃料电池和电池技术,再加上经度的长期船只设计和工程专业知识,Innosea集团Innosea在可行性和海洋可再生能源的专业能力中,ABL组在详细的概念上进行了详细的概念定义和集成的官员,并具有良好的经验。
摘要 提出了一种与任务阶段相关的直升机恶劣天气飞行显示和控制概念,该概念提供了规划和执行前往未知事故地点的救援任务以及在密闭区域着陆的所有能力。显示和控制概念定义的基础是特定的救援任务轨迹,确保高水平的安全性和避障能力。为此,开发了一种系统概念,允许直升机在受控空域飞行并进行精确导航。该系统还包括避障和数据链路组件。这里描述的控制和显示概念与特定的任务阶段有关。所述飞行测试表明该概念被广泛接受,并且控制和显示概念具有实际意义。
摘要 提出了一种与任务阶段相关的直升机恶劣天气飞行显示和控制概念,该概念提供了规划和执行前往未知事故地点的救援任务以及在密闭区域着陆的所有能力。显示和控制概念定义的基础是特定的救援任务轨迹,确保高水平的安全性和避障能力。为此,开发了一种系统概念,允许直升机在受控空域飞行并进行精确导航。该系统还包括避障和数据链路组件。这里描述的控制和显示概念与特定的任务阶段有关。所述飞行测试表明该概念被广泛接受,并且控制和显示概念具有实际意义。
1.2 研究目的 2 1.3 概念定义 5 1.3.a 后天性脑损伤与认知障碍 5 1.3.b 认知障碍 6 1.3.c 认知康复 7 1.3.d 注意力过程训练 8 1.3.e 音乐注意力控制训练 9 1.4 假设:基于音乐的认知康复 10 第二章:相关文献 13 2 相关文献 13 2.1 注意力 13 2.1.a 注意力:认知康复的基础 13 2.1.b 注意力:定义和理论 15 2.1.c 注意力处理:理论 18 2.1.d 工作记忆 20 2.1.e 注意力控制 23 2.1.f 自上而下的处理和目标导向行为 27 2.1.g 前额叶皮层在认知控制中的作用 28
最重要的进展是,2020 年 2 月,法国和德国政府正式宣布了一项合同,允许发射下一代战斗机 (NGF) 演示机,作为未来作战航空系统 (FCAS) 的一部分。关于阵风,2019 年,我们向法国以外的出口客户交付了 26 架飞机和相关服务,开始开发 F4 标准,并签署了法国阵风舰队的 Ravel 支持合同。其他亮点包括交付第一架现代化的 ATL2、法国订购首批两架 Falcon 8X Archange 战略情报飞机、向日本海岸警卫队交付四架 Falcon 2000 MSA 以及为法国海军进行 Falcon 2000 Albatros 概念定义研究。
目前的瑞典公共老年养老金系统于2003年完全实施。与收入相关的老年养老金系统由概念定义的贡献(NDC)付费组件和完全资助的定义缴款(DC)养老金组成。1两者都基于终身收入和个人帐户。此外,还有一个经过养老金收入测试的充值,保证退休金,由中央政府预算中的一般税款提供资金。相同的养老金规则适用于所有人员,无论职业部门以及员工和自雇人士。老年养老金制度是独立的,因为收入和支出受固定的规则,而不是政府预算的一部分。由议会的六方工作组决定其规则的同意,进一步加强了这种独立性。
1 精心设计的飞机设计 1 1.1 飞机设计的发展历程 1 1.1.1 喷气式客机和公务机的演变 1 1.1.2 先进设计框架 4 1.1.3 分析设计优化 4 1.1.4 计算设计环境 5 1.2 概念发现 6 1.2.1 先进设计 6 1.2.2 概念前研究 7 1.3 产品开发 8 1.3.1 概念定义 10 1.3.2 初步设计 11 1.3.3 详细设计 13 1.4 基准设计概述 13 1.4.1 基准尺寸 13 1.4.2 动力装置 15 1.4.3 重量与平衡 16 1.4.4 结构 16 1.4.5 性能分析 17 1.4.6闭环 18 1.5 自动设计综合 19 1.5.1 计算系统要求 19 1.5.2 示例 20 1.5.3 参数调查 21 1.6 技术评估 22 1.7 优化问题的结构 25 1.7.1 分析与综合 25 1.7.2 问题分类 26 参考书目 27