摘要:最坏的数据生成(WCDG)概率度量是作为表征机器学习算法的概括功能的工具。这样的WCDG概率度量被证明是两个不同优化问题的独特解决方案:(a)在数据集中,预期损失的最大化是在数据集中的相对熵相对于参考度量的一组概率测量值的最大化; (b)相对于参考度量,通过相对熵的正则化对预期损失的最大化。这样的参考度量可以解释为数据集中的先验。WCDG累积物是有限的,并根据参考度量的累积量进行了界定。分析WCDG概率度量引起的预期经验风险的浓度,引入了模型的(ϵ,δ) - 固定性的概念。闭合形式表达式显示了固定模型的预期损失的灵敏度。这些结果导致了新的表达式,用于任意机器学习算法的概括误差。这些表达式可以大致分为两个类。第一个涉及WCDG概率度量,而第二个涉及Gibbs算法。此发现表明,对Gibbs算法的概括误差的探索促进了适用于任何机器学习算法的总体见解的推导。
在各种声学环境中,在各种声音环境中实现强大的语音分离,并带来了一个开放的挑战。尽管现有的数据集可用于训练分离器以获取特定方案,但它们并未在各种现实世界中概括地概括。在本文中,我们提出了一条新型的数据模拟管道,该管道从一系列声学环境和内容中产生各种培训数据,并提出了新的培训范式,以提高一般语音分离模型的质量。具体来说,我们首先引入AC-SIM,AC-SIM是一种数据模拟管道,该管道结合了内容和声学的广泛变化。然后,我们将多个培训目标纳入置换不变训练(PIT),以增强训练有素的模型的分离质量和概括。最后,我们在分离界和基准之间进行了全面的观察和人类听力实验,以验证我们的方法,从而对非同源和现实世界测试集进行了实质性改进。索引术语:语音分离,数据模拟,多损失优化
对组合优化问题(例如旅行推销员问题)的神经网络求解器的端到端培训是棘手的,效率低下,超过了几百个节点。,当最新的机器学习方法经过琐碎的尺寸训练时,与经典求解器紧密相关,但他们无法将学习的政策推广到更大的实用范围。旨在利用转移学习来解决大规模TSP,本文确定了归纳偏见,模型架构和学习算法,这些算法促进对比培训中所见的实例更大的实例。我们的受控实验提供了对这种零弹性概括的首次原则研究,表明除训练数据超出训练数据需要重新思考神经组合优化管道,从网络层和学习范式到评估方案。
摘要。预先训练的视觉模型(VLMS)的出色概括能力使下游零镜头任务的微调VLM是流行的选择。尽管在基础类的专业性中取得了令人鼓舞的表现,但大多数现有的微调方法都遭受了新颖类的特征混乱,导致不满意的可转移性。为了解决这个问题,我们提出了一种称为基于及时的变分适配器(PVA)的分裂和争议方法,该方法通过分开基础和新样本来明确减少预测偏差。指定,我们设计了两个具有可学习的文本令牌的变异适配器,以使共享潜在空间中每种模态的潜在表示。一旦受过训练,我们就可以使用潜在特征的相似性度量,即将混乱任务转换为两个独立的样本(一个用于基本类别,另一个用于新颖的类别)。此外,为了提高新颖类的可传递性,我们通过残留连接进一步完善了具有全局特征的学习适配器的输出特征。我们对广义零射门学习和交叉传输的学习进行了广泛的实验,以证明我们的方法的优势,并在四个流行的基准上建立新的最先进的方法。
引言:量子机器学习 (QML) [1] 使用参数化量子电路 [2] 作为统计模型,近年来引起了广泛关注,并被应用于自然科学 [3-8] 或生成建模 [9-13]。即使 QML 模型具有高表达能力 [14] 且在某些特定情况下表现出优于经典模型 [15,16],但在深度神经网络时代,量子计算机 [17] 能获得什么样的优势仍不清楚。另一方面,量子数据可能是应用 QML 的自然范例,量子优势已得到证实 [18]。人们希望可以通过量子传感器 [19] 收集量子数据,并最终直接连接到量子计算机。在本文中,我们模拟了通过在量子设备上直接构建量子数据来处理量子数据的可能性。我们使用变分基态求解器来获得真实基态的近似值,以模拟嘈杂的真实世界数据。具体而言,本信函讨论了使用监督学习方法计算哈密顿量 H 的基态相图。即使已经针对二元情况 [ 20 , 21 ] 探索了类似的问题,具有多个类别 [ 22 ] 并在超导平台上进行了计算 [ 23 ],所有这些方法都受到构造限制,即瓶颈。事实上,由于训练需要标签,并且因为它们是通过分析或数值计算的,这些技术只能加快
关于泰国牲畜农场标准的农业和合作社的部长通知,牲畜标准农场必须具有兽医监督员来照顾动物健康。必须由农场兽医监督员开处方,应由泰国牲畜农场标准的农业和合作社部长通知。农场兽医主管必须保存至少两年的处方记录,并在DLD的需要时进行介绍。
Battaglini,M.,Gentile,G.,Luchetti,L.,Giorgio,A.,Vrenken,H. M.,Rocca,M。A.,Preziosa,P.,Gallo,A.,…De Stefano,N。(2019年)。寿命规范性数据有关大脑体积变化的速率。衰老的神经生物学,81,30 - 37。https://doi.org/10.1016/j.neurobiolaging.2019。05.010 Cam-Can Consortium,Samu,D.,Campbell,K。L.,Tsvetanov,K。A.,Shafto,M。A.,&Tyler,L。K.(2017)。随着年龄的增长而保留的认知功能取决于网络响应中的域依赖性变化。自然通讯,8(1),14743。https://doi.org/10.1038/ NComms14743 Chan,M。Y.,Park,D。C.,Savalia,N。K.,Petersen,S。E.和Wig,G。S.(2014)。减少了整个健康成人寿命中大脑系统的分离。美国国家科学院的会议记录,111(46),E4997 - E5006。Cox,R。W.(1996)。afni:用于分析和可视化功能磁共振神经图像的软件。计算机和生物医学研究,29(3),162 - 173。Dale,A.,Fischl,B。,&Sereno,M。I.(1999)。基于表面的皮质分析:I。分割和表面重建。Neuroimage,9(2),179 - 194。https://doi.org/10.1006/nimg.1998.0395 Destrieux,C.,Fischl,B.,Dale,A。,&Halgren,A。,&Halgren,E。(2010)。使用标准解剖学名称的人皮层回旋和硫酸自动曲柄。Neuroimage,53(1),1 - 15。(2016)。Soc。Dhollander,T。和Connelly,A。一种新型的迭代方法,可以从仅单壳( + b = 0)差异MRI数据中获得多组织CSD的益处。24 int。宏伟。共振。Med,24,3010。Esteban,O.,Markiewicz,C。J.,Blair,R。W.,Moodie,C.A.fmriprep:用于功能性MRI的强大预处理管道。自然方法,16(1),111 - 116。Fan,L.,Li,H.,Zhuo,J.,Zhang,Y.,Wang,J.,Chen,L.,Yang,Z.,Chu,C.,Xie,S。,&Laird,A。R.(2016)。 人类Brainetome Atlas:基于连接架构的新大脑图集。 大脑皮层,26(8),3508 - 3526。 Fischl,B。和Dale,A。M.(2000)。 通过磁共振图像测量人脑皮质的厚度。 美国国家科学院的会议录,97(20),11050 - 11055。 Fischl,B.,Liu,A。和Dale,A。M.(2001)。 自动流动手术:构建人类大脑皮层的几何准确和拓扑上正确的模型。 IEEE医学成像,20(1),70 - 80。 Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,van der Kouwe,A.,Killiany,R.,Kennedy,D.,Klaveness,S.,Montillo,S.,Montillo,A.,Makris,A. 整个大脑分割:人脑中神经解剖结构的自动标记。 Neuron,33,341 - 355。 磁共振图像的独立序列分段。 (1999)。Fan,L.,Li,H.,Zhuo,J.,Zhang,Y.,Wang,J.,Chen,L.,Yang,Z.,Chu,C.,Xie,S。,&Laird,A。R.(2016)。人类Brainetome Atlas:基于连接架构的新大脑图集。大脑皮层,26(8),3508 - 3526。Fischl,B。和Dale,A。M.(2000)。通过磁共振图像测量人脑皮质的厚度。美国国家科学院的会议录,97(20),11050 - 11055。Fischl,B.,Liu,A。和Dale,A。M.(2001)。 自动流动手术:构建人类大脑皮层的几何准确和拓扑上正确的模型。 IEEE医学成像,20(1),70 - 80。 Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,van der Kouwe,A.,Killiany,R.,Kennedy,D.,Klaveness,S.,Montillo,S.,Montillo,A.,Makris,A. 整个大脑分割:人脑中神经解剖结构的自动标记。 Neuron,33,341 - 355。 磁共振图像的独立序列分段。 (1999)。Fischl,B.,Liu,A。和Dale,A。M.(2001)。自动流动手术:构建人类大脑皮层的几何准确和拓扑上正确的模型。IEEE医学成像,20(1),70 - 80。Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,van der Kouwe,A.,Killiany,R.,Kennedy,D.,Klaveness,S.,Montillo,S.,Montillo,A.,Makris,A.整个大脑分割:人脑中神经解剖结构的自动标记。Neuron,33,341 - 355。磁共振图像的独立序列分段。(1999)。Fischl,B.,Salat,D.H.,van der Kouwe,A.J.W.,Makris,N.,Ségonne,F.,Quinn,B.T。,&Dale,A.M。(2004)。 Neuroimage,23(Suppl 1),S69 - S84。 https://doi.org/10.1016/j.neuroimage.2004.07.016 Fischl,B.,Sereno,M.I。,&Dale,&Dale,A. 基于表面的分析:II:通货膨胀,变平和基于表面的坐标系。 Neuro-图像,9(2),195 - 207。https://doi.org/10.1006/nimg.1998.0396 Gao,M.,Wong,C.H。Y.,Huang,Huang,H.,Shao,Shao,Shao,R. 基于连接的模型可以预测老年人的速度。 Neuroimage,223,117290。https://doi.org/ 10.1016/j.neuroimage.2020.117290 Gao,S.,Greene,A.S.,Constable,R.T。,&Scheinost,D。(2019)。 组合多个连接组可改善表型度量的预测建模。 Neuroimage,201,116038。https://doi.org/10.1016/j。 Neuroimage.2019.116038Fischl,B.,Salat,D.H.,van der Kouwe,A.J.W.,Makris,N.,Ségonne,F.,Quinn,B.T。,&Dale,A.M。(2004)。Neuroimage,23(Suppl 1),S69 - S84。https://doi.org/10.1016/j.neuroimage.2004.07.016 Fischl,B.,Sereno,M.I。,&Dale,&Dale,A.基于表面的分析:II:通货膨胀,变平和基于表面的坐标系。Neuro-图像,9(2),195 - 207。https://doi.org/10.1006/nimg.1998.0396 Gao,M.,Wong,C.H。Y.,Huang,Huang,H.,Shao,Shao,Shao,R.基于连接的模型可以预测老年人的速度。Neuroimage,223,117290。https://doi.org/ 10.1016/j.neuroimage.2020.117290 Gao,S.,Greene,A.S.,Constable,R.T。,&Scheinost,D。(2019)。组合多个连接组可改善表型度量的预测建模。Neuroimage,201,116038。https://doi.org/10.1016/j。Neuroimage.2019.116038
互联网拥塞控制(CC)长期以来在网络系统中提出了一个挑战控制问题,最近的方法越来越多地纳入了深度强化学习(DRL),以增强适应性和性能。尽管有希望,但基于DRL的CC方案通常会遭受公平性差,尤其是在培训期间未见的网络环境时。本文介绍了陪审团,这是一种基于DRL的新型CC计划,旨在实现公平性。At its heart, Jury decouples the fairness con- trol from the principal DRL model with two design elements: i) By transforming network signals, it provides a universal view of network environments among competing flows, and ii) It adopts a post-processing phase to dynamically module the sending rate based on flow bandwidth occupancy estima- tion, ensuring large flows behave more conservatively and smaller flows more aggressively, thus achieving a fair和平衡的带宽分配。我们已经完全实施了陪审团,广泛的评估证明了其在仿真和现实世界网络的广泛范围内的强大结合特性和高性能。
引言:量子机器学习 (QML) [1] 使用参数化量子电路 [2] 作为统计模型,近年来引起了广泛关注,并被应用于自然科学 [3-8] 或生成建模 [9-13]。即使 QML 模型具有高表达能力 [14] 且在某些特定情况下表现出优于经典模型 [15,16],但在深度神经网络时代,量子计算机 [17] 能获得什么样的优势仍不清楚。另一方面,量子数据可能是应用 QML 的自然范例,量子优势已得到证实 [18]。人们希望可以通过量子传感器 [19] 收集量子数据,并最终直接连接到量子计算机。在本文中,我们模拟了通过在量子设备上直接构建量子数据来处理量子数据的可能性。我们使用变分基态求解器来获得真实基态的近似值,以模拟嘈杂的真实世界数据。具体而言,本信函讨论了使用监督学习方法计算哈密顿量 H 的基态相图。即使已经针对二元情况 [ 20 , 21 ] 探索了类似的问题,具有多个类别 [ 22 ] 并在超导平台上进行了计算 [ 23 ],所有这些方法都受到构造限制,即瓶颈。事实上,由于训练需要标签,并且因为它们是通过分析或数值计算的,这些技术只能加快
摘要:神经系统使用输出曲目来产生各种运动。因此,大脑必须解决如何在不同运动中发出相同输出的方式。最近的一项建议指出,网络连接性限制了神经活动的过渡,以遵循不同运动的不变规则,我们称其为“不变动态”。但是,尚不清楚不变动力学是否实际上用于驱动和概括跨移动的输出,以及它们为控制运动提供了什么优势。使用将运动皮层活性转化为神经假体光标输出的脑机界面,我们发现相同的输出是由不同运动中不同活动模式发出的。这些不同的模式然后根据不变动态模型过渡,从而导致模式驱动不同的未来输出。最佳控制理论揭示了这种不变动态的使用减少了控制运动所需的反馈输入。我们的结果表明,大脑使用不变动态来概括跨运动的输出。