现有的车辆轨迹预测模型与普遍性,预测不确定和处理复杂相互作用的斗争。通常是由于针对特定数据集定制的复杂体系结构和效率低下的多模式处理的限制所致。我们使用Reg Ister查询(PerReg+)提出每个CEVER,这是一个新型的轨迹预测框架,引入了:(1)通过自我抗议(SD)和蒙版重建(MR),捕获全球上下文和细粒度细节的双重水平表示学习。此外,我们重建段级轨迹和泳道段的方法和查询下降的车道段,有效地利用上下文信息并改善了概括; (2)使用基于寄存器的查询和预处理增强了多模式,从而消除了对聚类和抑制的需求; (3)在微调过程中进行自适应及时调整,冻结主要体系结构并优化少量提示以进行有效的适应性。perreg+设置了Nuscenes [1],Argoverse 2 [2]和Waymo Open Motion数据集(WOMD)[3]的新最新性能。引人注目的是,我们验证的模型在较小的数据集中将误差降低了6.8%,多数据集训练增强了概括。在跨域测试中,PERREG+与非预言变体相比,B-FDE降低了11.8%。
本文在关系,非平稳的随机环境中介绍了一种持续计划和模型学习的新方法。这种功能对于在不确定和不断发展的现实世界中的连续决策系统的部署至关重要。在此类实践环境中工作,具有未知(和非平稳)过渡系统和不断变化的任务,所提出的框架模型模型差距在代理人的当前知识状态中,并使用它们来进行集中,调查的探索。使用这些探索收集的数据用于学习可概括的概率模型,用于解决当前任务,尽管环境动力学发生了持续变化。在几个非平稳基准领域上的经验评估表明,这种方法在样本复杂性方面显着优于计划和RL基准。理论结果表明,当平稳性保持时,该系统表现出理想的收敛性。
该立场论文通过提高培训数据超出培训数据的能力来探讨人工智能的进步,这是对抽象和推理语料库(ARC)任务的关键要求。受到历史算法挑战(例如邦加德问题)的启发,ARC任务需要模式进行综合和逻辑推理,从而将AI推向了更具灵活性,类似人类的智能。我们调查了Dreamcoder,一种神经符号系统,以及大型语言模式在ARC中的作用。我们强调了对人类试验和合成数据增强的启发的需求,并提出了使用数学启发的神经体系结构进行逻辑推理的管道。这项工作强调了ARC如何指导AI研究,弥合了机器学习与数学发现之间的差距。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
抽象工作记忆(WM)是一个在线内存系统,对于在正在进行的认知处理过程中以快速访问状态保持注入至关重要。因此,在提供WM载荷的时间解析索引的方法中具有很强的价值。尽管已经确定了单变量的EEG信号随着WM负载而变化,但多变量分析方法的最新进展表明,可能会有丰富的信息来源不会产生可靠的单变量标志。在这里,使用了四项已发表研究的数据(n = 286和> 250,000个试验),我们证明了对脑电图电压地形的多元分析提供了对WM中存储的项目数量的敏感指数,这些索引概括为新型人类观察者。此外,多元负载检测(“ MVLOAD”)可以在单试级别提供强大的信息,超过现有单变量方法的灵敏度。我们表明,此方法以(1)独立于备忘录的空间位置的方式跟踪WM负载,(2)足够精确地在存储的项目数量中划分项目划分,(3)可在不同的任务和刺激显示的跨个体差异,以及(4)与wm wm行为中的个体差异相关。因此,这种方法为单变量分析方法提供了强大的补充,并阐述了人类在线内存存储的时间解决方案。
摘要 - 在大量数据上预先限制模型,这是AI的流行趋势。但是,由于需要有效的控制动作,为机器人学习收集足够的离线培训轨迹特别昂贵。因此,大多数现有的机器人数据集是从人类专家那里收集的。我们使用称为“机器人自学”的新框架来解决此类数据收集问题,该框架要求机器人自我生成有效的培训数据,而不是依靠人类示威者。我们的关键想法是在状态空间上训练单独的数据生成策略,以自动生成具有不断增长的复杂性的有意义的动作和轨迹。然后,这些生成的数据可进一步用于训练具有强大构图概括功能的视觉策略。我们在两个视觉操作测试台上验证了我们的框架,包括一个多物体堆叠域和流行的RL基准“ Franka Kitchen”。实验表明,对自生数据进行培训的最终视觉政策可以实现需要长马机器人执行的新颖测试目标。项目网站https://sites.google.com/ view/robot-self-teaching。
冷冻电子断层扫描是一个快速发展的领域,用于研究其天然环境中的宏观复合物,并有可能彻底改变我们对蛋白质功能的理解。然而,在低温图中,快速准确地识别颗粒是具有挑战性的,它代表了下游过程中的显着瓶颈,例如亚图平均图。在这里,我们提出了tomocpt(断层式质心预测工具),这是一种基于变压器的解决方案,该解决方案将粒子检测重新探测为使用高斯标签的质心预测任务。我们的方法是建立在Swinunetr架构的基础上的,它表现出了卓越的性能,而二进制标签策略和模板匹配都相比。我们表明,tomocpt通过零弹性推断有效地将新型粒子类型推广到新颖的粒子类型,并且可以通过有限的数据进行微调来显着增强。The efficacy of tomoCPT is validated using three case studies: apoferritin, achieving a resolution of 3.0 A ˚ compared with 3.3 A ˚ using template matching, SARS-CoV-2 spike proteins on cell surfaces, yielding an 18.3 A ˚ resolution map where template matching proved unsuccessful, and rubisco molecules within carboxysomes, reaching 8.0 A ˚ resolution.这些结果证明了Tomocpt处理各种场景的能力,包括密集的环境和膜结合的蛋白质。该工具作为命令行计划的实现,再加上其微调数据要求,使其成为高通量冷冻数据处理工作流的实用解决方案。
Vision语言基础模型(VLFM)显示出令人印象深刻的概括功能,使其适合域概括(DG)任务,例如合成图像的培训和对真实数据的测试。但是,现有评估主要使用由互联网图像构建的学术基准,类似于用于培训VLFM的数据集。本文评估了基于VLFM的DG算法在两个合成到实体分类数据集,Rareplanes Tiles和飞机上的性能,旨在模仿工业文本。我们的发现表明,虽然VLFMS上的基准优于随机初始化的净作品,但在这些类似工业的数据集中,它们的优势大大降低。这项研究强调了评估模型在不同的代表性数据上的重要性,以了解其现实世界的适用性和局限性。
对自动网络防御的一个重大挑战是确保防御力代理在各种网络拓扑和配置之间概括的能力。在部署在动态变化的环境中,例如设备可能经常加入并离开的企业网络时,该功能必须保持有效。深入加固学习的标准方法,其中策略是使用固定输入的多层感知器(MLP)的参数化的,期望固定尺寸的观察和动作空间。在自主的网络防御中,这使得很难开发具有与受过训练的网络拓扑不同的环境,因为节点的数量会影响观察和动作空间的自然大小。为了克服这一限制,我们使用基于实体的信息进行学习重新构建了自主网络防御的问题,在这种学习中,代理的观察和动作空间被分解为离散实体的集合。此框架可以使用专门用于组成概括的策略参数。我们将基于变压器的政策培训有关打哈欠泰坦网络安全模拟环境的政策,并在各种网络托管中测试其概括能力。我们证明,当跨越不同拓扑的固定尺寸网络训练时,这种方法在训练固定尺寸的网络上时会大大优于基于MLP的策略,并且在单个网络上进行培训时的性能匹配。我们还证明了与训练中看到的网络零弹性概括的潜力。这些发现突出了基于实体的强化学习的潜力,可以通过提供能够在现实世界网络环境中处理差异的更普遍的策略来推进自动网络防御的领域。