•保险和多元化•交易和对冲识别投资或分配代理商的资本监控机会的机会,例如公司控制促进商品和服务的交换,例如通过货币和交流媒体•更普遍地,创建(→)流动资产财务创新,例如证券化,导数,加密货币
在本手稿中,作者提出了一种使用物理噪声源(或称为熵源)进行随机变量进行概率分布计算的方法。这项工作是基于研究小组以前通过WDM和带有相变内存的光子横杆阵列的矩阵乘积乘法的工作。对我的理解,在这里,他们提出适应相同的硬件来操纵“混乱的光”以独立控制输出概率分布的平均值和差异,并使用WDM启用“单次镜头”读数此类概率分布。我想向作者努力详细地详细解释其系统的物理学,并在主要文本和补充材料中以很高的清晰度来解释其系统的物理。尽管我对这种方法的实际好处有保留,但从学术角度来看,这个想法听起来很有趣和新颖。我会向编辑接受次要修订。下面我将列举一些我认为需要改进的几点。
基于梯度的优化方法的加速度是一个显着实用和理论上重要性的主题,尤其是在机器学习应用中。虽然已经有很多关注是在欧几里得空间内进行优化的,但在机器学习中优化概率度量的需求也激发了这种情况下加速梯度的探索。为此,我们引入了一种类似于欧几里得空间中基于动量的方法的哈密顿流量方法。我们证明,在连续的时间设置中,基于这种方法的算法可以达到任意高阶的收敛速率。我们用数值示例补充了发现。关键字:加速度方法,基于动量的方法,哈密顿流,瓦斯恒星梯度流,重球方法。
设计自由形式的光子设备是一个充满挑战的主题,因为结构性自由的高度。在这里,我们提出了一种新算法,该算法使用伴随灵敏度分析和扩散模型对光子结构进行操作。我们证明,将伴随梯度值整合到非授权过程中,可以生成高性能设备结构。我们的方法可以通过合并在遵循制造约束的合成图像上训练的扩散模型来优化少量模拟的结构。与常规算法相比,我们的方法消除了对复杂的二进制化和圆锥过滤器的需求,克服了本地Optima的问题,并提供了多种设计选项。尽管具有固有的随机性,但我们的算法稳健地设计了高性能设备,并且优于最先进的非线性算法。
图2。验证基于高斯过程的ML模型。(a)在得出的ΔKE和高斯过程之间的(a)在得出ΔKE和高斯过程的ΔKE和高斯过程之间,在得出的Δ和高斯过程之间预测了Δ(c)Δ(c)Δ(c)导出的Δ(c)范围差异的MD模拟V r和高斯过程之间的差异图预测了v r(d)概率密度函数eprots eratigre trots trots efictiationdutifeΔkekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekeke的概率的函数(e)的概率(e)的概率(e)差异的百分比(e)差异。 (f)在V r的预测中,百分比误差的概率密度函数图。 HEA的动能耗散(ΔKE)和穿透深度(δ),残留速度(V r)为(a)在得出ΔKE和高斯过程的ΔKE和高斯过程之间,在得出的Δ和高斯过程之间预测了Δ(c)Δ(c)Δ(c)导出的Δ(c)范围差异的MD模拟V r和高斯过程之间的差异图预测了v r(d)概率密度函数eprots eratigre trots trots efictiationdutifeΔkekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekeke的概率的函数(e)的概率(e)的概率(e)差异的百分比(e)差异。 (f)在V r的预测中,百分比误差的概率密度函数图。HEA的动能耗散(ΔKE)和穿透深度(δ),残留速度(V r)为
摘要 - 医学成像应用在人体解剖学,病理学和成像领域方面高度专业。因此,用于培训医学成像中深度学习应用的注释培训数据集不仅需要高度准确,而且还需要多样化,并且足够大,以涵盖与这些规格有关的大多数合理示例。我们认为,实现此目标可以通过带有注释的合成图像的受控生成框架来促进,需要多个条件规格作为输入才能提供控制。我们采用denoising扩散概率模型(DDPM)来训练肺CT域中的大规模生成模型,并根据无分类器采样策略进行扩展,以展示一个这样的生成框架。我们表明,我们的方法可以产生带注释的肺CT图像,这些图像可以忠实地代表解剖学,令人信服地愚弄专家将其视为真实。我们的实验表明,这种性质的受控生成框架几乎可以超过几乎所有最新的图像生成模型,而在接受类似的大型医疗数据集接受培训时,在生成的医学图像中实现了解剖学一致性。
嵌入式系统的广泛部署对我们的社会产生了重大影响,因为它们在许多关键的实时应用中与我们的生活相互作用。通常,用于安全或任务关键型应用(例如航空航天、航空电子、汽车或核领域)的嵌入式系统在恶劣的环境中工作,在这些环境中,它们会频繁遭受瞬态故障,例如电源抖动、网络噪声和辐射。它们还容易受到设计和生产故障导致的错误的影响。因此,它们的设计目标是即使在发生错误的情况下也能保持及时性和功能正确性。容错对于实现可靠性起着至关重要的作用,而设计有效和高效的容错机制的基本要求是潜在故障及其表现的现实和适用模型。在这种情况下需要考虑的一个重要因素是故障和错误的随机性,如果在时序分析中通过假设严格的最坏情况发生场景来解决这些问题,可能会导致不准确的结果。同样重要的是,通过有效利用可用资源实现容错,解决嵌入式系统的功率、重量、空间和成本限制。本论文提出了一个框架,用于设计可预测的可靠嵌入式实时系统,同时解决及时性和可靠性问题。它提出了一系列容错策略,特别是针对嵌入式实时系统。通过考虑系统构建块的不同关键性级别,可以实现高效的资源利用。容错策略与所提出的概率可调度性分析技术相辅相成,这些技术基于全面的随机故障和错误模型。
前言 第 ix 页 1 简介 1 1.1 智能代理 1 1.2 关于环境的推理 4 1.3 为什么要进行不确定推理? 5 1.4 多智能体系统 7 1.5 合作式多智能体概率推理 11 1.6 应用领域 13 1.7 参考文献 14 2 贝叶斯网络 16 2.1 第 2 章指南 16 2.2 贝叶斯概率论基础 19 2.3 使用 JPD 进行信念更新 23 2.4 图 24 2.5 贝叶斯网络 27 2.6 本地计算和消息传递 30 2.7 通过多个网络传递消息 31 2.8 大规模消息传递的近似值 33 2.9 参考文献 35 2.10 练习 36 3 信念更新和聚类图 37 3.1 第 3 章指南 38 3.2 聚类图 40 3.3聚类图中的消息传递 43 3.4 与 λ − π 消息传递的关系 44 3.5 非退化循环中的消息传递 47 3.6 退化循环中的消息传递 53
本文考虑了通过随机树的产生来考虑普通差异方程式(ODES)解决方案的概率表示。我们在方程系数上介绍了足够的条件,以确保在此表示中使用的随机树的功能的集成性和统一性,并对其爆炸时间产生定量估计。这些条件依赖于控制随机树生长的标记分支过程的分析,其中标记可以解释为种群遗传学模型中的突变类型。我们还展示了分支过程爆炸是如何连接到ODE解决方案的存在和独特性的。
早期在线版本:该初步版本已被接受用于地球系统的人工智能出版,可以完全引用,并已被分配DOI 10.1175/AIES-D-24-0002.1。最终的排版复制文章将在发布时在上述DOI上替换EOR。