统计推断证据范式的扩展,而 Shafer 将这些上限和下限概率解释为可信度和信念函数,而不参考具有一对多映射的底层概率空间。这样获得的方法被 Shafer 称为证据理论。它专门用于表示和合并不可靠的证据。相反,由于对随机变量的观察不完整,Dempster 设置中的上限和下限概率也可能模拟未知的概率。第二个想法是使用(凸)概率集,要么是因为统计模型不为人所知,要么是因为生成主观概率的通常协议发生了改变,承认与风险事件相关的彩票的买卖价格可能不同。后者是沃利低预测和不精确概率理论的基础。事实证明,沃利的框架在数学上比 Dempster-Shafer 理论更通用。本章介绍了贝叶斯概率论的这些概括。
抽象目标正畸支架债券失败是临床正畸中的障碍。这项研究研究了pH循环对剪切键强度(SBS),粘合残余指数(ARI)的影响以及无粘合式灰灰陶瓷支架的生存概率。将40个下颌前磨牙的材料和方法随机分为两组(n¼20):C:未包裹的正畸支架和F:无灰灰粘性粘合式涂层的正畸托架。根据储存培养基溶液(n¼10),将每组细分为两个亚组:在亚组中,标本浸入人工唾液中24小时,在亚组ASL中,在亚组ASL中,将标本循环起来,将标本再生在非矿物化溶液和一个人工saliva saliva saliva saliva之间,待42天。在每个亚组中,试样进行SBS和ARI测试。SBS数据。Weibull分析,以确定特征SBS及其生存概率。结果无胶粘剂固定的支架在AS组(17.74 1.74 1.74 MPA)和ASL组(12.61 1.40 MPA)中的SBS值具有更高的显着性(P <0.001)。AS组中非涂层括号的ARI得分为70%,得分为1,而在ASL组中得分1的分数为90%。对于无灰烬的预涂层括号,AS组的分数为2的ARI分数为70%,而得分为2的分数为
概率图形模型(PGM)紧凑地编码一组随机变量的完整关节概率分布。PGM,并已成功地用于计算机视觉中(Wang等,2013),误差校正代码(McEliect等,1998),生物学(Durbin等,1998)等(Durbin等)等。在本文中,我们专注于离散的PGM。对具有可牵引因子1的离散PGM进行近似后验推断的标准方法涉及诸如循环信念传播(LBP)之类的消息通讯算法(Pearl,1988; Murphy等,1999)。lbp在变量和因子图的因子之间传播“消息”。,尽管过去进行了几次尝试(请参阅第2节),但没有建立良好的开源Python软件包可以实现效率和可扩展的LBP用于一般因子图。关键挑战在于设计和操纵Python数据结构,该数据结构包含LBP消息,用于支持具有任意拓扑的大型因子图和
增强了极端热量,这是温度时间序列[1]的创纪录高数,损害人类健康,福利和基础设施的损害以及生态系统[2,3]。热量的影响随温度和其他热量指数非线性增加[4]。因此,重要的是要准确预测有关当前天气动态和持续气候变化的信息的极端风险[5]。通常,极端温度是使用统计极端价值理论建模的,该理论可以渐近地描述最极端值的分布,这是从任何广泛的概率分布中提取的足够大数量集中的分布[6]。通常通过使用电台观测值或天气和气候模型输出的年度最高温度(表示为TXX [7])的时间序列来实现这一目标。基于极值理论,假定TXX值是从广义极值分布(GEVD)[8]中生成的。使用最大似然或其他合适的方法从TXX数据估算GEVD参数后,可以估计温度超过任何指定阈值的可能性[9-12]。为了说明气候变化的影响,GEVD通常被认为是非平稳的,其位置参数将其模型为全球平均温度的线性函数,并且可能是其他协变量[13]。极端温度已使用类似的归因研究方法进行了建模,该方法旨在量化观察到的最近的热波的风险的人为升高[14-17]。由世界天气归因协作开发的此类归因研究的标准方法是估计of of of of of of of temere热量的可能性,假设TXX或其他基于温度的时间序列遵循GEVD,将位置参数作为全球平均温度的线性函数。将这种概率与从同一统计模型中得出的概率进行比较,当时全球平均温度设置为工业化前基线,而人为变暖增加了因素(概率比),从而增加了观察到极端的可能性[18,19]。
通过分析主要火灾因素来确定森林火灾概率水平,可以为森林经理提供对诸如防火策略,燃油管理,消防安全措施,紧急计划以及消防团队安置等问题做出关键决策的基础。主要影响火灾因素,包括植被因素,地形因素,气候因素以及与某些特征(如道路和住宅区)的邻近性,被认为是产生森林火灾概率图。机器学习(ML)算法已成为预测森林射击概率的有效工具。这项研究旨在通过使用与地理信息系统(GIS)Tech Niques集成的两个常用ML模型(LR)和支持向量机(SVM)来生成森林火灾概率图。这项研究是在位于Türkiye的地中海城市安塔利亚市的Elale Forest Enterprise Enterprise(FEC)实施的。在研究中,影响火灾的因素是树种,冠状,树阶段,坡度,方面以及通往道路的距离。 在模型的训练阶段考虑了从2001年至2021年在FEC中发生的森林大火。 使用曲线(AUC)值的区域(AUC)值验证了火灾概率图的精度。 由于执行ML模型,在地图上进行了47 086点的估计,该估计分为五个火灾概率水平(非常高,高,中,中,低和非常低)。 根据概率图,超过一半的森林在研究区域具有很高/高的火灾概率水平。在研究中,影响火灾的因素是树种,冠状,树阶段,坡度,方面以及通往道路的距离。在模型的训练阶段考虑了从2001年至2021年在FEC中发生的森林大火。使用曲线(AUC)值的区域(AUC)值验证了火灾概率图的精度。由于执行ML模型,在地图上进行了47 086点的估计,该估计分为五个火灾概率水平(非常高,高,中,中,低和非常低)。根据概率图,超过一半的森林在研究区域具有很高/高的火灾概率水平。结果表明,LR模型生成的火概率图的准确性更好(AUC = 0.845),比SVM模型生成的MAP的准确性(AUC = 0.748)。
在本手稿中,作者提出了一种使用物理噪声源(或称为熵源)进行随机变量进行概率分布计算的方法。这项工作是基于研究小组以前通过WDM和带有相变内存的光子横杆阵列的矩阵乘积乘法的工作。对我的理解,在这里,他们提出适应相同的硬件来操纵“混乱的光”以独立控制输出概率分布的平均值和差异,并使用WDM启用“单次镜头”读数此类概率分布。我想向作者努力详细地详细解释其系统的物理学,并在主要文本和补充材料中以很高的清晰度来解释其系统的物理。尽管我对这种方法的实际好处有保留,但从学术角度来看,这个想法听起来很有趣和新颖。我会向编辑接受次要修订。下面我将列举一些我认为需要改进的几点。
在动态环境中运行的边缘设备迫切需要能够持续学习而不会发生灾难性遗忘。这些设备中严格的资源限制对实现这一目标构成了重大挑战,因为持续学习需要内存和计算开销。使用忆阻器设备的交叉开关架构通过内存计算提供能源效率,并有望解决此问题。然而,忆阻器在电导调制中通常表现出低精度和高可变性,这使得它们不适合需要精确调制权重大小以进行整合的持续学习解决方案。当前的方法无法直接解决这一挑战,并且依赖于辅助高精度内存,导致频繁的内存访问、高内存开销和能量耗散。在这项研究中,我们提出了概率元可塑性,它通过调节权重的更新概率而不是大小来整合权重。所提出的机制消除了对权重大小的高精度修改,从而消除了对辅助高精度内存的需求。我们通过将概率元可塑性集成到以低精度忆阻器权重在错误阈值上训练的脉冲网络中,证明了所提机制的有效性。持续学习基准的评估表明,与基于辅助内存的解决方案相比,概率元可塑性实现了与具有高精度权重的最先进的持续学习模型相当的性能,同时用于附加参数的内存消耗减少了约 67%,参数更新期间的能量消耗减少了约 60 倍。所提出的模型显示出使用低精度新兴设备进行节能持续学习的潜力。
设计自由形式的光子设备是一个充满挑战的主题,因为结构性自由的高度。在这里,我们提出了一种新算法,该算法使用伴随灵敏度分析和扩散模型对光子结构进行操作。我们证明,将伴随梯度值整合到非授权过程中,可以生成高性能设备结构。我们的方法可以通过合并在遵循制造约束的合成图像上训练的扩散模型来优化少量模拟的结构。与常规算法相比,我们的方法消除了对复杂的二进制化和圆锥过滤器的需求,克服了本地Optima的问题,并提供了多种设计选项。尽管具有固有的随机性,但我们的算法稳健地设计了高性能设备,并且优于最先进的非线性算法。
这一学说的本质是将量子概率解释为主观的。也就是说,QBist 概率并不反映相对频率、客观机会或其他物理概率概念;它们更倾向于量化个人主观的信念程度。QBist 概率的主观性可以通过赋予概率 1 语句的含义来说明。如果 QBist 代理以概率 1 预测实验结果,这并不意味着该未来结果的物理状态;特别是,它并不意味着结果必然会实现,也不意味着所讨论的结果已经存在于外部世界中,等待被揭示。唯一的暗示是代理完全相信会找到所讨论的结果。这是关于她或他的期望的事实,而不是关于物理世界的事实。(Dieks 2022,3f。)
摘要:使用社区地球系统模型(CESM)进行的最新模拟表明,在不同的表面淡水强迫下,海冰过程在大西洋子午倾斜循环(AMOC)磁滞行为中至关重要。在这里,我们使用其他CESM模拟和新颖的概念海洋 - 海冰盒模型进一步研究了这个问题。CESM模拟表明,海冰的存在引起了统计平衡的存在,而AMOC强度较弱。这在概念模型中得到了证实,该模型捕获了与CESM模拟相似的AMOC HyStere-SIS行为,以及计算稳态与淡水强迫参数相比。在概念模型中,使用稀有事件技术确定不同均衡状态之间的过渡概率。考虑海冰的效应时,从强大的AMOC状态到AMOC状态较弱的过渡概率增加,并表明海冰促进了这些过渡。另一方面,海冰绝缘效应强烈降低了从弱AMOC状态到强大的AMOC状态的反向过渡的概率,这意味着海冰也限制了AMOC的恢复。这里的结果表明,海冰效应在不同平衡状态之间的AMOC磁滞宽度和影响转变概率中起主要作用。