我们通过重现Hilbert空间的相关协方差操作员来考虑概率分布的分析。我们表明,这些操作员的冯·诺伊曼熵和相对熵与香农熵和相对熵的通常概念密切相关,并具有许多特性。它们与概率分布的各种牙文的有效估计算法一起出现。我们还考虑了产品空间,并表明对于张量产品内核,我们可以定义互信息和联合熵的概念,然后可以完美地表征独立性,但只有部分条件的独立性。我们最终展示了这些新的相对熵的新概念如何导致日志分区函数上的新上限,这些概念可以与变异推理方法中的凸优化一起使用,从而提供了新的概率推理方法家族。
基于得分的生成模型(SGM)在巨大的图像生成任务中取得了显着的成功,但它们的数学基础仍然受到限制。在本文中,我们分析了SGM在学习下高斯概率分布家族时的近似和概括。我们将相对于标准高斯度量的相对密度而言,引入了概率分布的复杂性概念。我们证明,如果对数相关密度可以通过一个神经网络局部近似,该神经网络可以适当地界定参数,那么经验分数与匹配的经验分布产生的分布近似于总变化的目标分布与尺寸与独立的速率。我们通过例子说明了我们的理论,其中包括某些高斯人的混合物。我们证明的一种基本要素是为与前进过程相关的真实分数函数得出无维度的深神网络近似率,这本身就是有趣的。
ChatGPT 是一个使用先进机器学习技术的“人工智能”(AI)计算机程序,具体来说,它使用概率分布来生成类似人类的句子,使用数百 GB 的文本 - 即基于数十亿个单词序列 - 并且能够创建专业的技术内容
摘要。生成模型,尤其是生成对抗网络 (GAN),正在被研究作为蒙特卡罗模拟的可能替代方案。有人提出,在某些情况下,使用量子 GAN (qGAN) 可以加速使用 GAN 的模拟。我们提出了一种新的 qGAN 设计,即双参数化量子电路 (PQC) GAN,它由一个经典鉴别器和两个采用 PQC 形式的量子生成器组成。第一个 PQC 学习 N 像素图像的概率分布,而第二个 PQC 为每个 PQC 输入生成单个图像的归一化像素强度。为了实现 HEP 应用,我们在模拟量热仪输出并将其转换为像素化图像的任务上评估了双 PQC 架构。结果表明,该模型可以重现固定数量的图像,尺寸更小,并且能够重现它们的概率分布,我们预计它应该可以让我们扩展到真实的量热仪输出。
本文研究了一种联合估计基于能量的模型和基于流的模型的训练方法,其中两个模型基于共享的对抗值函数进行迭代更新。该联合训练方法具有以下特点:(1)基于能量的模型的更新基于噪声对比估计,流模型作为强噪声分布。(2)流模型的更新近似地最小化了流模型与数据分布之间的 Jensen-Shannon 散度。(3)与生成对抗网络(GAN)估计由生成器模型定义的隐式概率分布不同,我们的方法估计数据上的两个显式概率分布。使用所提出的方法,我们证明了流模型的综合质量的显著改进,并展示了通过学习到的基于能量的模型进行无监督特征学习的有效性。此外,所提出的训练方法可以轻松适应半监督学习。我们取得了与最先进的半监督学习方法相媲美的成果。
量子近似优化算法 (QAOA) 最初是为了在量子计算机上寻找组合优化问题的近似解而提出的。然而,该算法也引起了人们对采样目的的兴趣,因为在合理的复杂性假设下,理论上证明了算法的一层已经设计出了一种超出经典计算机模拟范围的概率分布。在这方面,最近的一项研究还表明,在通用伊辛模型中,这种全局概率分布类似于纯粹但类似热的分布,其温度取决于自旋模型的内部相关性。在这项工作中,通过对该算法的干涉解释,我们扩展了单层 QAOA 生成的本征态振幅和玻尔兹曼分布的理论推导。我们还从实际和基本角度回顾了这种行为的含义。
摘要 我们重新审视了 Ekerå 和 Håstad 最近提出的用于计算短离散对数的量子算法。通过仔细分析该算法引起的概率分布,我们发现其成功概率高于以前报告的概率。受对分布理解的加深的启发,我们提出了一种改进的后处理算法,该算法比原始后处理算法效率更高、能够实现更好的权衡并且需要的运行次数更少。为了证明这些说法,我们通过对给定对数引起的概率分布进行采样,为该量子算法构建了一个经典模拟器。这个模拟器本身就是一项重要贡献。我们用它来证明,在针对具有短指数的 RSA 和 Diffie–Hellman 的加密相关实例时,Ekerå–Håstad 不仅在每次单独运行中,而且在整体上都比 Shor 更具优势。
我们引入了一种概率建模,用于分解住宅能源使用的自下而上模拟。参数概率分布的建模,其参数在用法和设备功率方面具有自然解释。人类行为(例如睡眠和家庭占用变量)也被视为其相应训练的概率模型。模型参数是通过最小化Kullback -Leibler差异与已知设备和行为使用数据的最小化调整的。自生发射的光伏能量包含在模拟中,并使用用于存储和电动车辆使用的电池。仿真匹配欧洲重塑和意大利负载数据集中的个体和汇总使用负载程序。获得的模型对于住宅分类的模拟很有用,允许单个设备从房屋变为房屋。概率分布可以用作能源管理系统,风险管理和电网故障预测的先验知识,并且可以根据非平稳的实时房屋行为和设备使用来调整。2022 Elsevier B.V.保留所有权利。
概率分水岭是一种应用于无向图的半监督学习算法。给定一组带标签的节点(种子),它定义了一个吉布斯概率分布,该分布覆盖所有可能断开种子的生成森林。它计算每个节点采样一个将某个种子与所考虑节点连接起来的森林的概率。我们提出了“有向概率分水岭”,这是概率分水岭算法对有向图的扩展。在概率分水岭的基础上,我们应用有向图的矩阵树定理,并定义一个吉布斯概率分布,该分布覆盖所有以种子为根的传入有向森林。与无向情况类似,这等同于有向随机游走。此外,我们表明,在吉布斯分布具有无限低温度的极限情况下,有向概率分水岭的标记等于由最小成本的传入有向森林引起的标记。最后,为了说明,我们将所提出的方法与其他有向图半监督分割方法的经验性能进行了比较。
摘要。生成建模已成为近期量子计算机的一个有前途的用例。特别是,由于量子力学的根本概率性质,量子计算机自然地建模和学习概率分布,可能比传统方法更高效。Born 机就是这种模型的一个例子,很容易在近期的量子计算机上实现。然而,在其原始形式中,Born 机只能自然地表示离散分布。由于连续性质的概率分布在世界上很常见,因此必须有一个能够有效表示它们的模型。文献中提出了一些建议,用额外的功能补充离散 Born 机,以便更容易学习连续分布,然而,所有这些都不可避免地在一定程度上增加了所需的资源。在这项工作中,我们提出了基于连续变量量子计算的替代架构的连续变量 Born 机,它更适合以资源最少的方式对此类分布进行建模。我们提供的数值结果表明该模型能够学习量子和经典连续分布,包括在存在噪声的情况下。