对话角色对语音 AI 和人类对话者语音对齐的影响 标题:角色和对话者影响对齐 Georgia Zellou、Michelle Cohn 和 Tyler Kline 语音实验室,加利福尼亚大学戴维斯分校语言学系 469 Kerr Hall,One Shields Ave.,戴维斯,CA 95616,美国 通讯作者电子邮件:gzellou@ucdavis.edu 摘要 两项研究调查了对话角色对人类和语音 AI 对话者语音模仿的影响。在单词列表任务中,给予者指示接收者将单词放在两个列表中的哪一个上;这个对话任务类似于用户与语音 AI 系统进行的简单口头交互。在地图任务中,参与者与对话者一起完成填空工作表,这是一项更复杂的交互任务。参与者与两个对话者完成了两次任务,一次作为信息提供者,一次作为信息接收者。通过相似性评级评估语音对齐,并使用混合效应逻辑回归进行分析。在单词列表任务中,参与者在更大程度上仅与人类对话者保持一致。在地图任务中,仅作为给予者的参与者更多地与人类对话者保持一致。结果表明,语音对齐由对话者的类型介导,并且对话角色的影响因任务和对话者而异。关键词:语音对齐、语音-AI、人机交互、对话角色
在广阔的组合空间(例如可能的动作序列、语言结构或因果解释)中进行有效搜索是智能的重要组成部分。是否有任何计算领域足够灵活,可以为如此多样化的问题提供解决方案,并且可以在神经基质上稳健地实现?根据以前的论述,我们提出达尔文过程是一个有希望的候选者,该过程在连续的不完美复制和神经信息模式选择周期中运行。在这里,我们通过一个储存器计算单元教另一个储存器计算单元来实现不完美的信息复制。根据对读出信号的评估,动态分配教师和学习者角色。我们证明,新兴的达尔文读出活动模式群体能够在崎岖的组合奖励景观上维持并不断改进现有解决方案。我们还证明了存在一个尖锐的错误阈值,即神经噪声水平,超过该水平,进化过程积累的信息就无法维持。我们介绍了一种新的分析方法,即神经系统发育,它展示了神经进化过程的展开。
联合新闻稿 新加坡,2021 年 6 月 8 日 NTU、NP 和 NHCS 科学家发明的新型人工智能工具可以加快心血管疾病的诊断 新加坡南洋理工大学 (NTU Singapore)、新加坡义安理工学院 (NP) 和新加坡国家心脏中心 (NHCS) 的一组研究人员发明了一种可以加快心血管疾病诊断的工具。在人工智能 (AI) 的推动下,他们的创新利用心电图 (ECG) 来诊断冠状动脉疾病、心肌梗死和充血性心力衰竭,准确率超过 98.5%。联合开发诊断工具非常及时,因为新加坡过去三年来因心血管疾病导致的死亡人数有所增加。据新加坡心脏基金会称,2019 年新加坡所有死亡人数中有 29.3%(几乎占新加坡死亡人数的三分之一)是心脏病或中风造成的。科学家们希望他们的创新能够支持临床环境中心血管疾病的诊断,特别是在医生进行初步心电图检查时,最终加快治疗进程。研究人员使用一种名为 Gabor-卷积神经网络 (Gabor-CNN) 的人工智能机器学习算法设计了诊断工具,该算法模仿人脑的结构和功能,使计算机能够像人类一样从过去的经验中学习。他们使用该算法,通过输入反映心血管疾病的心电图信号示例来训练他们的工具识别患者心电图中的模式。这项研究的共同作者、NHCS 心脏病学系高级顾问临床副教授 Tan Ru San 表示:“我们对一小组初步研究对象进行的研究表明,在使用常规心电图对一些常见心血管疾病进行分类的准确性方面取得了令人鼓舞的结果。虽然确认特定疾病仍需要额外的测试,但我们的诊断工具将
工程设计问题通常涉及大型状态和动作空间以及高度稀疏的奖励。由于无法穷尽这些空间,因此人类利用相关领域知识来压缩搜索空间。深度学习代理 (DLAgents) 之前被引入使用视觉模仿学习来模拟设计领域知识。本文以 DLAgents 为基础,并将其与一步前瞻搜索相结合,以开发能够增强学习策略以顺序生成设计的目标导向代理。目标导向的 DLAgents 可以采用从数据中学习到的人类策略以及优化目标函数。DLAgents 的视觉模仿网络由卷积编码器 - 解码器网络组成,充当与反馈无关的粗略规划步骤。同时,前瞻搜索可以识别由目标指导的微调设计动作。这些设计代理在一个无约束桁架设计问题上进行训练,该问题被建模为一个基于动作的顺序配置设计问题。然后,根据该问题的两个版本对代理进行评估:用于训练的原始版本和带有受阻构造空间的未见约束版本。在这两种情况下,目标导向型代理的表现都优于用于训练网络的人类设计师以及之前反馈无关的代理版本。这说明了一个设计代理框架,它可以有效地利用反馈来增强学习到的设计策略,还可以适应未见的设计问题。[DOI:10.1115/1.4051013]
哲学与图灵(Turing)提出的历史模仿测试(1948-1952)的哲学最佳联系。我将研究图灵的模仿游戏或测试的各种版本的历史和认识论根源,并表明它们是在对话中发出的,实际上是科学的争议,最著名的是与物理学家和计算机先驱者道格拉斯·哈特里(Douglas Hartree),化学家和哲学家Michael Polanyi,Michael Polanyi和Neurosurgeon Geoffrey Jeffery Jeffers。将图灵的观点放在
合成数据与人工智能医疗设备的创新、评估和监管 Puja Myles,公共卫生硕士、博士;Johan Ordish,文学硕士;Richard Branson,理学硕士、文学硕士 摘要 合成数据是模仿真实数据的属性和关系的人工数据。它有望促进数据访问、验证和基准测试,解决缺失数据和欠采样、样本增强以及在临床试验中创建对照组的问题。英国药品和保健产品管理局 (MHRA) 正在利用其目前对高保真合成数据开发的研究,制定其对经过合成数据训练的人工智能医疗设备的监管立场,并将合成数据作为人工智能医疗设备验证和基准测试的工具。 关键词 人工智能作为医疗设备 (AIaMD)、数据隐私、健康数据、合成数据、验证、监管 简介 人工智能 (AI) 在医疗和社会保健领域的应用预计将会兴起,这意味着人工智能作为医疗设备 (AIaMD) 将成为医疗设备中越来越突出的子类别。 1 因此,医疗器械法规是否适合人工智能变得越来越重要,制造商是否了解并遵守其义务也变得越来越重要,其中最主要的是证明其 AIaMD 具有良好的效益风险比。2 强大的数据集是展示 AIaMD 性能的核心,通常是此类设备开发的主要障碍。3 医疗器械监管机构有责任确保制造商拥有履行这些义务所需的工具,并提供更广泛的支持以鼓励此类创新设备的开发。合成数据集的开发很可能成为这样一种辅助工具。本文概述了 MHRA 在研究和开发合成数据方面的努力,并考虑在更广泛的改革背景下使用合成数据,以确保医疗器械法规适用于人工智能。合成数据概况 近年来,人们对合成数据的兴趣日益浓厚,原因有很多,包括在数据治理法规更加严格的世界中可能易于获取、保护患者隐私、在机器学习算法背景下的基准测试和验证能力,以及解决真实数据局限性的能力,如数据缺失、欠采样和样本量小。4 更重要的是,尽管合成数据的潜在应用已经讨论了多年,但直到最近,合成数据生成方法的进步才能够产生高质量的合成数据。5 定义合成数据 从概念上讲,合成数据是模仿真实数据的属性和关系的人工数据。合成数据的质量取决于生成合成数据的方法。合成数据的质量通常用其“效用”或“保真度”来描述。“能够捕捉各种数据字段之间复杂的相互关系以及真实数据的统计特性的合成数据集可称为“高实用性”或“高保真度”合成数据集。在患者医疗保健数据方面,高保真度合成数据集将能够捕捉复杂的临床关系,并且在临床上与真实患者数据难以区分。高效用合成数据的生成往往需要大量资源,并且根据需要合成数据的应用,使用低效用或中等效用合成数据可能是可以接受的。
摘要:历史证据表明,自古埃及时代以来已经使用了假体。假体通常用于功能和化妆品外观。如今,随着技术的进步,诸如人工手的假体不仅可以提高功能,而且还具有心理优势,因此可以显着增强个人的生活水平。与高级科学结合,假体不仅是一种简单的机械装置,而且是一种美学,工程和医学奇迹。假肢是帮助截肢者重新融入社会的最佳工具。在本文中,我们讨论了假肢的背景和进步,其工作原则和可能的未来含义。我们还向读者留下一个公开的问题,假肢手是否可以模仿并取代我们的生物学手。
摘要对应对“大数据”的需求不断增长(基于或在人工智能的协助下),以及对更完全理解大脑的运作的兴趣,刺激了欧特的启用,以构建来自廉价的常规组件的生物学模拟计算系统,并构建neurol od eare die earo earo earo neuro-neuro-morphic systems)计算系统。在一侧,这些系统需要异常数量的处理器,这引入了性能限制和非局部缩放。在另一侧,神经元操作与常规工作负载差异很大。The conduction time (transfer time) is ignored in both in conventional computing and ”spatiotemporal” compu- tational models of neural networks, although von Neu- mann warned: ” In the human nervous system the con- duction times along the lines (axons) can be longer than the synaptic delays, hence our above procedure of ne- glecting them aside of τ [the processing time] would be unsound ” [1], section 6.3。仅这种区别就可以模仿技术实施中的生物学行为。此外,计算中最近的问题引起了人们对时间行为的关注,即时间行为也是计算系统的一般特征。已经注意到了他们在生物系统和技术系统中的某些影响。在这里建议的转移时间正确处理,而不是引入一些“外观”模型。基于Minkowski变换引入时间逻辑,给出了定量洞察
一、机器会思考 22 1 阿兰·M·图灵(1912-1954):机器的先知....................................................23 1.1 问题和章节结构....................................................................23 1.2 图灵的不敬....................................................................26 1.3 图灵的讽刺....................................................................27 . ... ... . ... ... . ... ... 61 2.3 奇迹:图灵的思维认识论.................................................................................................................................................... 66 2.4 学习:图灵的思维本体论.................................................................................................................................................... 70 2.5 图灵对其假设的现实主义态度.................................................................................................................................................... 76 2.6 对存在主义假设的九种可能的解释.................................................................................................................................... 83 2.7 重新审视图灵的既定观点.................................................................................................................... . ... . ... . .... .... .... .... 125 3.4 “机器能够思考”暗示着一个存在主义假设 . .... .... .... .... .... .... 136 3.5 1949年,关键的一年 . .... .... .... .... .... .... .... .... .... .... .... .... 142 3.6 模仿游戏的内部结构 . .... .... .... .... .... .... .... .... .... .... .... .... 152 3.7 模仿游戏的双重功能 . .... .... .... .... .... .... .... .... .... .... . . . . . 163
我们开发了针对SARS-COV-2的全球肽疫苗,该疫苗解决了不同个体的免疫反应中异质性的双重挑战以及感染病毒的潜在异质性。polypepi-SCOV-2是一种多肽疫苗,其中含有从SARS-COV-2的所有主要结构蛋白中得出的9个30-MER肽。疫苗肽是根据其频率作为HLA I类和II类个人表位(PEPIS)的频率选择的,仅限于个体的多个自体HLA等位基因,以不同种族的433名受试者的硅群中。polypepi-SCOV-2疫苗用山烷基ISA 51VG辅助剂量产生的鲁棒,Th1偏置的CD8 +和CD4 + T细胞反应,针对病毒的所有四种结构蛋白,以及在BALB/C/C和CD34 + Transgenic Mice中的抗生素上的所有四种结构蛋白。此外,在症状发作后1-5个月,在17个无症状/轻度Covid-19康复研究中,在17个无症状/轻度COVID-19康复研究中,在17个无症状/轻度Covid-19康复研究中检测到多功能CD8 +和CD4 + T细胞的多功能CD8 +和CD4 + T细胞。用于从Covid-19中恢复的polypepi-Scov-2特异性T细胞库非常多样化:供体平均具有7种不同的肽特异性T细胞,针对SARS-COV-2蛋白;有87%的捐助者对至少三个SARS-COV-2蛋白有多个目标,而对所有四个蛋白质的目标为53%。此外,还基于康复供体的完整HLA I类基因型确定的PEPIS以84%的精度进行了验证,以预测为个体测量的PEPI特异性CD8 + T细胞反应。将上述发现外推向美国的骨髓供体队列16,000个具有16个不同种族的基因型个体(每个种族n = 1,000个种族)表明,普雷比皮 - scov-2疫苗接种polypepi-scov-2疫苗接种一般人群中的polypepi-scov-2 (bame)队列。将上述发现外推向美国的骨髓供体队列16,000个具有16个不同种族的基因型个体(每个种族n = 1,000个种族)表明,普雷比皮 - scov-2疫苗接种polypepi-scov-2疫苗接种一般人群中的polypepi-scov-2 (bame)队列。