量子井纳米层通常显示单模激光,因为增益饱和抑制了其他模式的排放。相比之下,对于带有gan量子井的低语画廊模式的微台面激光器作为活性材料,观察到高于阈值的多模激光发射。这种有趣的发射特征表现出了以下事实:几种模式同时在激光开始时显示了输入 - 输出曲线中的特征扭结。纳米层的量子理论用于支持实验发现,并在存在增益饱和的情况下分析这种行为。在相邻模式之间的耦合效应被鉴定为多模磁力的起源,该构图通过类似于经典波浪混合效应的种群脉动在模式之间启动光子交换。降低了这种类型的模式耦合,并显示了增加模式间距。结果可以为在集成光子电路中的多模层应用铺平道路。
我们提出了一种用于集成到脑植入式生物遥测系统中的蛇形三波段平面倒置 F 天线 (PIFA)。其目标应用包括无线数据通信、远场无线功率传输以及在医疗设备无线电通信服务 (MedRadio) 频段 (401–406 MHz) 和工业、科学和医疗 (ISM) 频段 (902–928 MHz 和 2400–2483.5 MHz) 的睡眠/唤醒模式之间的切换控制。通过在辐射器中嵌入蛇形槽并将其短接至地,我们将天线尺寸缩小到 11 × 20.5 × 1.8 mm3 的体积。我们使用全波电磁场模拟的 7 层数值人体头部模型优化了天线。在模拟中,我们将植入物放入脑脊液 (CSF) 中,深度为距体表 13.25 毫米,这比大多数植入式天线的深度要深。我们在液体模型中制造并测试了天线,并在模拟器中复制了该模型以进行进一步比较。天线的测量增益分别在 402 MHz、902 MHz 和 2400 MHz 下达到最先进的值 - 43.6 dBi、- 25.8 dBi 和 - 20.1 dBi。
1 光的连续变量量子理论 3 1.1 量子谐振子..................................................................................................................................................................4 1.1.1 哈密顿量的量子化..................................................................................................................................................................4 1.1.2 海森堡不确定性原理和算子归一化.................................................. 5 1.2 光的模态表示..................................................................................................................................................................................6 1.2.1 经典光.................................................................................................................................................................................. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.1 具有连续变量的图状态的理论框架 . ...
摘要 简介 英国的几次军事探险已经成功使用生理传感器来监测参与者对恶劣环境条件的生理反应。本文介绍了一种多模式可穿戴生物传感器的开发和试验,该传感器用于首次全女性无人协助的南极大陆滑雪穿越。该项目成功地将远程实时生理数据传回英国。从人体工程学和技术经验中吸取的教训为未来的可穿戴设备提供了建议。 方法 生物传感器设备设计为可持续贴在皮肤上并捕获:心率、心电图、体表温度、生物阻抗、汗液 pH 值、钠、乳酸和葡萄糖。数据通过近场技术从设备传输到安卓智能手机。安卓智能手机上运行的定制应用程序使用市售的卫星收发器将数据安全传输到英国研究中心。 结果 多模式设备捕获的实时生理数据成功传回英国研究控制中心 6 次。参与者的远征后反馈有助于改进下一代设备的人体工程学和技术。结论可穿戴技术未来的成功取决于建立临床对测量数据质量的信心,以及在个人、环境和所从事活动的背景下对这些数据的准确解释。在不久的将来,可穿戴生理监测可以提高即时诊断的准确性,并为关键的医疗和指挥决策提供信息。
由于连续的阴雨天或阴天会导致太阳辐射间歇,这是简易小型太阳能干燥机的一个限制。这些条件常常使它们无法使用。通过加入储存系统(热积累)和/或辅助能源,即使在日照量低的时期也可以连续进行干燥过程或脱水。因此,本研究模拟并评估了一种混合系统的热行为和能量行为,该系统用于加热流向太阳能食品干燥机脱水室的空气。用于模拟的软件是 TRNSYS。模拟的混合系统由一个平板太阳能集热器和一组电阻器组成,可确保空气以恒定的温度进入脱水室。选定的目标温度为 70 o C,假设脱水室中没有食品。考虑到巴西南部城市的气候条件,采用四个电阻器(总功率为 1900 W,功率分别为 1000 W、500 W 和 200 W)的布置足以保证空气以恒定的温度进入。
摘要 - 大气光散射包含复杂的物理过程,包括各种散射机制和光学参数。应对破译这种现象的计算密集任务所带来的挑战,这项研究引入了有效的实时仿真策略。所提出的方法采用物理驱动的大气建模,利用统一的相位函数模仿瑞利和MIE散射现象。使用射线制定的概念来解决散射积分,将散射积分近似并离散。基于不同光源的特征,确定了准确的射线建设长度,从而简化了光路的计算轨迹。此外,纹理抖动的引入增强了初始采样位置的随机性。阴影地图算法擅长生成阴影映射纹理,从而消除了阴影区域内的光计算的需求,从而减少了样本数量和计算工作负载。最后,颜色合成用于确定在各种雾密度条件下大气的渲染颜色。实验结果表明,与其他先进的光散射渲染方法相比,这种方法可显着提高渲染效率,并实现实时渲染,同时保持逼真的光散射效果。
中国空间技术研究院 (中国) 643 26,135 30 空客 (欧洲) 611 13,954 67 波音 (美国) 430 14,624 88 Energiya (俄罗斯) 430 7,401 37 三菱电机 279 89,137 20 IHI 201 13,657 28 泰雷兹 (欧洲) 153 6,495 54 三菱重工 131 27,823 16 霍尼韦尔 (美国) 117 19,431 7 雷神 (美国) 105 5,383 3 斯奈克玛 (欧洲) 102 4,363 6 太空系统/劳拉 (美国) 58 168 12 Viasat (美国) 1 685 0 蓝色起源 (美国) 12 19 1 SpaceX(美国) 1 10 9 Rocket Lab(美国) 5 5 0 北京零度空间科技公司(中国) 2 24 0 Mojave Aerospace Ventures(美国) 2 2 0 PLD space(西班牙) 0 0 0 Reaction Engines(英国) 6 13 4 Relativity Space(美国) 0 2 0 Skyrora(英国) 0 0 0 Oneweb(美国) 11 29 0 Blacksky(美国) 0 0 0 Capella Space(美国) 0 0 0 Hawkeye360(美国) 0 6 0 Iceye(芬兰) 0 1 0 OHB System(德国) 1 8 20 Planet(美国) 5 27 2 Spire Global(美国) 6 22 0 ispace(日本) 7 13 1 Planetary Resources(美国) 4 4 1 Astroscale 12 12 0 D-Orbit (意大利) 4 4 0 NASA (美国) 91 1,924 959 日本宇宙航空研究开发机构 119 500 473 国防科技大学 (中国) 69 6,274 280 哈尔滨工业大学 (中国) 338 25,237 274 加州理工学院 (美国) 19 2,648 314 韩国航空宇宙研究院 (韩国) 436 2,739 72
名启博:プラマ・核融合学志92,396(2016)。[4 W.H.fietz and al。,IEEE Trans。苹果。超级。26,4800705(2016)。 [5]P。Bruzzone和Al。 ,ncle。 Fuance 58,103001(2018)。 l。米切尔和阿尔。 ,超级条件。 SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。26,4800705(2016)。[5]P。Bruzzone和Al。,ncle。Fuance 58,103001(2018)。l。米切尔和阿尔。,超级条件。SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。SCI。树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。树。34,103001(2021)。!t。安多和al。,技术完整。1,791(1998)。Lage F. Dahlgren和Al。,Eng已满。甲板。167,139(2006)。]H。H. Hashizume和Al。,Eng已满。甲板。63,449(2002)。[10! Y. Ogawa和Al。,J。填充完整的等离子体。79,643(2003)。<+11 Z. Yoshida和Al。,Ressing主题等离子体。1,8(2006)。[12 Y. Ogawa和Al。,Ressing主题等离子体。9,140,014(2014)。13 V. Corat和Al。,Eng已满。甲板。136,1597(2018)。14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。14 A. Sagara和Al。,Eng已满。甲板。89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。89,2114(2014)。15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。15 Y. Zhai和Al。,Eng已满。甲板。135,324(2018)。https://typeoneergy.com/ [20!Sorbon和Al。,Eng已满。甲板。100,378(2015)。[22 A A. Sykes和Al。,ncle。Fusion 58,016039(2018)。<3- y。歌曲和Al。 ,Eng已满。 甲板。 183,113247(2022)。 24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。歌曲和Al。,Eng已满。甲板。183,113247(2022)。24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。24-24 N. Yanagi和Al。,Ressing主题等离子体。9,140,013(2014)。,Proc。 14th Symp。 Fusion Technology,1727(1986)。,Proc。14th Symp。Fusion Technology,1727(1986)。
近 年 来 , 预 训 练 语 言 模 型 已 逐 渐 成 为 自 然 语 言 处 理 领 域 的 基 座 模 型 。 相 关 实 验 现 象 表 明 , 预 训 练 语 言 模 型 能 够 自 发 地 从 预 训 练 语 料 中 学 到 一 定 的 语 言 学 知 识 、 世 界 知 识 和 常 识 知 识 , 从 而 在 知 识 密 集 型 任 务 上 获 得 出 色 的 表 现 ( AlKhamissi et al., 2022 ; Safavi and Koutra, 2021 ; Petroni et al., 2019 ) 。 然 而 , 预 训 练 语 言 模 型 中 的 知 识 隐 式 地 存 储 在 参 数 之中 , 难 以 显 式 地 对 预 训 练 语 言 模 型 中 的 知 识 进 行 分 析 和 利 用 。 同 时 , 预 训 练 语 言 模 型在 知 识 和 推 理 上 的 表 现 并 不 可 靠 , 常常 会 出 现 “ 幻 觉 ” 现 象 ( Ji et al., 2022 ) , 给 出 与 知 识 冲 突 的 预 测 结 果 。 这 些 因 素 阻 碍 了 预 训 练 语 言 模 型 提 供 可 靠 的 知 识 服 务 。 因 此 , 探 究 模 型 掌握 知 识 的 机 理 、 研 究 如 何 提 取 和 补 充 语 言 模 型 中 的 知 识 成 为 近 期 的 研 究 热点 。 本 次 讲 习 班 主 要 内 容 包 括 预 训 练 语 言 模 型 中 的 知 识 分 析 、 预 训 练 语 言 模 型 的 知 识 萃 取 、 知 识 增 强 的 预 训 练 语 言 模 型 三个 部 分 , 听 众 将 在 本 次 讲 习 班 中了 解 到 近 期 研 究 中 对 预 训 练 语 言 模 型 掌握 知 识 情 况 的 认识 、 从 预 训 练 语 言 模 型 中 提 取 符 号 知 识 的 实 现 方 案 、 利 用 外 部 知 识 增 强 模 型 弥 补 缺 陷 的 各 类 方 法 。
尽管如此,由于文献或材料供应商数据表中关于材料高温 CHS 的报道非常少,因此湿气引起的应力大多被忽略。这是由于缺乏有效的测量方法和该领域的技术知识 [5]。由于测量过程中湿气会快速蒸发,因此测量高温膨胀具有挑战性。市售工具,如带相对湿度附件的动态机械分析仪 (DMA-RH) [5, 6],其温度能力有限,最高可达 85 !C,而典型的无铅焊料回流工艺可高达 260 !C。更高温度的测量在技术上具有挑战性。需要更高的压力来将湿气保持在高温下的液态,而使用当今的标准工具根本无法实现。一种更流行的方法是使用标准热机械分析仪 (TMA) 设备来测量加热时饱和样品的应变。快速解吸会导致湿气分布不均匀。因此,假设应变为平均应变。需要进行额外的水分质量校正后处理分析来补偿水分损失。据报道,这种方法往往会高估 CHS [2, 4]。此外,一些研究建议避免使用基于解吸的方法,因为某些材料可能具有不可逆的吸湿膨胀特性 [7]。另一种尝试过的方法是莫尔干涉法 (MI) [8, 9],它具有良好的准确性和可重复性。然而,它有固有的局限性,因为在样品表面复制的耐腐蚀光栅会导致测量误差,尤其是对于薄样品。此外,所有这些都是