摘要 电动多旋翼飞机在消防队、警察和军事单位中越来越受欢迎。这一趋势背后的驱动力是降低单位成本和提高能力。特别是传感器和微处理器技术的稳步发展允许使用更复杂的控制算法。目前具有更高能量密度的电池的发展将进一步加速这一趋势。本文的目的是介绍一种可扩展和模块化多旋翼飞机的新概念。这些飞机由三个或更多相同的六角形单元组成。每个单元包含两个管道式、直接驱动的反向旋转螺旋桨以及电机控制器、电池和一个控制单元。单元可以任意连接在一起,以创建高度冗余、节能和经济高效的飞机,以满足各种任务要求。
2 www.mckinsey.com/business-functions/operations/our-insights/reinventing-construction-through-a-productivity-revolution 3 https://www.energyefficiencyforall.org/resources/more- savings-for-more-residents-progress-in-multifamily-housing-energy/ 4 https://www.nibs.org/oscc 5 https://www.modular.org/industry-analysis/ 6 https://www.mckinsey.com/~/media/mckinsey/business%20functions/operations/our%20insights/voices%20on%20infrastruct%20scaling%20modular%20construction/gii-voices-sept-2019.pdf 7 https://www.modular.org/what-is-modular-construction/ 8 www.researchgate.net/publication/305550264_Towards_the_adoption_of_modular_construction_and_prefabrication_in_the_construction_environment_A_case_study_in_Malaysia 9 www.meehleis.com/wp-content/uploads/2015/05/2015_Off-Site_PMC_Report-Ryan-Smith.pdf
摘要 目的:本研究旨在开发一个独立于输入和输出设备的便携式模块化脑机接口 (BCI) 软件平台。我们在一名颈椎损伤 (C5 ASIA A) 受试者的案例研究中实施了该平台。背景:BCI 可以通过使用脑信号控制假肢或触发功能性电刺激来恢复瘫痪患者的独立生活。尽管已有多项研究成功地在实验室和家庭中实施了这项技术,但便携性、设备配置和看护者设置仍然是限制其在家庭环境中部署的挑战。便携性对于将 BCI 从实验室转移到家庭至关重要。方法:BCI 平台实施包括一个 Activa PC + S 发电机,该发电机带有两个硬膜下四接触电极,植入在感觉运动皮层的主要左手臂区域,一个固定在受试者轮椅后部的微型计算机,一个定制的手机应用程序,以及一个作为末端执行器的机械手套。为了量化这种 BCI 家用实现的性能,我们量化了家庭系统设置时间、长期(14 个月)解码准确度、硬件和软件分析以及应用程序和微型计算机之间的蓝牙通信延迟。我们创建了一个运动想象标记信号数据集,以在远程计算机上训练二元运动想象分类器,以供在线在家使用。结果:微型计算机和移动应用程序之间的平均蓝牙数据传输延迟为 23 ± 0.014 毫秒。受试者看护者的平均设置时间为 5.6 ± 0.83 分钟。获取和解码神经信号以及将这些解码信号发送到末端执行器的平均时间分别为 404.1 毫秒和 1.02 毫秒。无需重新训练,训练后的运动想象分类器的 14 个月中位准确度为 87.5 ± 4.71%。结论:本研究展示了家庭 BCI 系统的可行性,受试者可以使用友好的移动用户界面无缝操作该系统,无需每日校准,也不需要技术人员在家设置。本研究还描述了 BCI 系统的便携性以及即插即用多端的能力
谐振转换器通常采用比硬开关转换器更高的开关频率,即使开关能量稍微减少,也能降低设备的工作温度并提高电源效率。此外,较小的关断过压也有助于降低开关损耗。表 1 报告了不同功率水平下关断期间的过压。ACEPACK SMIT 有助于降低约 8% 的过压。
抽象上下文。对啮齿动物的长期深度脑刺激(DBS)研究对于该领域的研究进度至关重要。但是,大多数刺激装置都需要夹克或大型头部安装系统,这些系统严重影响流动性和一般福利影响动物的行为。目标。开发一种临床前神经刺激植入系统,用于小动物模型中的长期DBS研究。方法。我们提出了一种称为软件定义的植入式平台(Stella)的低成本双通道DBS植入物,其印刷电路板尺寸为Ø13×3.3毫米,重量为0.6 g,当前消耗为7.6 µ µA/3.1 V,结合了一种基于环氧树脂的包装方法。主要结果。Stella提供具有广泛使用的商业电极的电荷平衡和可配置的电流脉冲。在体外研究表明,使用CR1225电池表明至少12周无错误的刺激,但我们的计算预测使用CR2032的电池寿命最多为3年。在成年大鼠中对丘脑下核的DBS的示例性应用表明,在42天内,完全植入的Stella神经刺激剂在42天内耐受良好的耐受性,而没有相关的术后阶段相关压力,从而导致正常动物行为。封装,功能的外部控制和监视被证明是可行的。用标准参数刺激通过丘脑下神经元引起C-FOS表达,证明了Stella的生物活性功能。意义。所有硬件,软件和其他材料均可在开源许可下获得。我们开发了一种完全可植入的,可扩展和可靠的DBS设备,该设备满足了在自由移动的啮齿动物疾病模型中对DB的反向转化研究的迫切需求,包括敏感的行为实验。因此,我们根据“人道实验技术的原理” - 替代,减少和精致(3R)添加了一项重要的动物研究技术。
空间体系结构的领域不仅必须与真空运行的环境挑战相抗衡,而且还必须在火箭有效载荷上市的物理尺寸限制,风险的宇航员太空步行和装配机器人的机器人移动性有限的情况下。为了应对这些挑战,我们提出了一个新的建筑范式,该范式超越了轨道上的铝制圆柱体,以朝着较大的批量,模块化的空间站建设,这些空间站仍然符合生命支持系统和安全性的任务。我们的Tesserae(用于探索可重新配置的自适应环境的镶嵌电磁空间结构)研究平台基于生物含量的原理:遵循某种“编码”增长模式的离散节点的自组装。我们还引入了可鲁棒性和适应性的冗余和可重构零件。我们的工作着重于自主自我组装和自我调节空间结构,而无需人类EVA或机器人剂。总体而言,Tesserae硬件平台包括一系列用于自我意识的自我组装和维护的功能,可允许轨道上的多模块空间体系结构的空间结构和可重新配置。我们的研究平台将磁对接,传感器技术和控制代码集成到将公共基本单元粘合到模块化结构中。该平台的早期,小型硬件测试台在2020年的30天内成功部署在ISS上,并计划进一步执行任务。我们的ICES 2021的论文提出了将这种结构,空间自组装与内部宜居性整合到内部宜居性的愿景,其中包括用于模块化结构的新的ECLSS集成计划。我们还指出了Tesserae的双重任务概念,a)合并a)微重力自组装和轨道操作与b)能够自我分配和重新使用结构瓷砖在行星表面上使用。
Mimosa C5X是该行业最广泛的,模块化的无线电解决方案,具有五个增益选项(8、12、16、20和25 DBI)。超稀疏的解决方案提供了从4.9-6.4 GHz的扩展频率操作,具有最佳的噪声免疫。提供了灵活性和价值的终极,C5X是5 GHz部署的首选解决方案。C5X可在PTP或PTMP模式下使用,速度高达700 Mbps。
2023年3月1.0版©版权所有 - Delta Energy Systems(德国)GmbH - 保留所有权利。所有信息和规格都可以在未经事先通知的情况下进行修改。
我们是全球领先的学习公司,在世界各地。我们在全球的学习者,教育机构,雇主,政府和其他合作伙伴中提供内容,评估和数字服务。我们致力于帮助学习者获得增强就业前景并在不断变化的工作世界中取得成功所需的技能。我们相信,无论人们在哪里学习繁荣,人们也是如此。