我们介绍了一种减少合成蛋白质成本和由生成模型设计的其他生物学的成本的方法。,我们使我们的生成模型制造模型可以使模型设计的序列可以在现实世界中有效合成,并具有极端的并行性。我们通过训练和合成样品来证明抗体,T细胞抗原和DNA聚合酶的生成模型。例如,我们对3亿观察到的人类抗体进行训练,并合成该模型的10 17生成的设计,以10 3美元的价格实现了与先进的蛋白质语言模型相当的样品质量。使用以前的方法,综合具有相同精度和大小的库将花费大约四亿(10 15)美元。
我们介绍了一种减少合成蛋白质成本和由生成模型设计的其他生物学的成本的方法。,我们使我们的生成模型制造模型可以使模型设计的序列可以在现实世界中有效合成,并具有极端的并行性。我们通过训练和合成样品来证明抗体,T细胞抗原和DNA聚合酶的生成模型。例如,我们对3亿观察到的人类抗体进行训练,并合成该模型的10 17生成的设计,以10 3美元的价格实现了与先进的蛋白质语言模型相当的样品质量。使用以前的方法,综合具有相同精度和大小的库将花费大约四亿(10 15)美元。
我们介绍了一种减少合成蛋白质成本和由生成模型设计的其他生物学的成本的方法。,我们使我们的生成模型制造模型可以使模型设计的序列可以在现实世界中有效合成,并具有极端的并行性。我们通过训练和合成样品来证明抗体,T细胞抗原和DNA聚合酶的生成模型。例如,我们对3亿观察到的人类抗体进行训练,并合成该模型的10 17生成的设计,以10 3美元的价格实现了与先进的蛋白质语言模型相当的样品质量。使用以前的方法,综合具有相同精度和大小的库将花费大约四亿(10 15)美元。
增材制造,或称三维 (3-D) 打印,正受到前所未有的关注。增材制造是一套新兴技术,它通过增材工艺直接从数字模型制造三维物体,通常通过沉积和“就地固化”连续的聚合物、陶瓷或金属层。2 与涉及减法(例如切割和剪切)和成型(例如冲压、弯曲和模制)的传统制造工艺不同,增材制造将材料连接在一起以制造产品。关于这一新兴行业的文章数量从 2011 年的 1,600 篇增加到 2012 年的 16,000 篇。3 增材制造市场包括全球所有增材制造产品和服务,同样显示出令人印象深刻的增长:从 2011 年的 17 亿美元增长到 2012 年的 22 亿美元,增幅为 28.6%。4 不断发展和流动的增材制造技术正在塑造产品开发和制造的未来。
人们对使用非模式微生物作为生物制药制造宿主的兴趣日益浓厚。这些宿主需要进行基因组工程以满足临床相关的产品质量和滴度,但对于特征不明显的宿主,CRISPR-Cas9 等基因组编辑工具的适应性发展一直很缓慢。具体而言,缺乏对 RNA 聚合酶 III 转录的生化表征阻碍了向导 RNA 在新宿主中的可靠表达。在这里,我们提出了一种基于测序的策略,用于设计宿主特异性盒式磁带,以实现向导 RNA 的模块化、可靠表达。使用这种策略,我们在甲基营养酵母 Komagataella phaffii 中实现了高达 95% 的基因编辑效率。我们将这种方法应用于复杂表型的快速、多重工程,通过两个连续的工程步骤实现人源化产品糖基化。将简单的基因编辑工具可靠地扩展到非模型制造宿主,将能够快速设计针对特定产品配置的制造菌株,并可能降低工艺开发的成本和时间。
与其预见和准备应对太空任务中可能出现的所有机器故障、事故和其他挑战,不如利用增材制造的灵活性进行“太空制造”(ISM),这似乎是合乎逻辑的。载人航天任务依赖于复杂的设备,其安全运行是一项巨大的挑战。考虑到载人登月和火星任务的绝对距离,从地球运送用于维修和更换丢失设备的备件将需要太多时间。由于设计灵活性高,并且能够直接从计算机辅助模型制造即用型组件,增材制造技术在这种情况下似乎极具吸引力。此外,还需要适当的技术来制造宇航员在月球和火星上长期居住的建筑栖息地以及材料/原料。将设备和材料送入太空的能力不仅非常有限且成本高昂,而且还引发了人们对地球环境问题的担忧。因此,并非所有材料都能从地球运送,人们正在设想利用原地资源的战略,即原地资源利用(ISRU)。对于复杂零件和设备的制造以及大型基础设施,需要开发适当的太空材料加工技术。
Div> 7 RMK10 InnoFund开发增强互动教育促进器,具有高传感增强现实平台2011 8 RMK10 InnoFund 2I技能培训MART 2011 9 RMK10 INNOFUND CUSTOME-MADE MADE for FINDRY铸造模式和模型制造2011 Yuran Quote(Sky)在线2011 11 RMK10 Innofund PLPT-PORPABL-PLAS-PORPABL-PLESS TELABL和压力测试方法2011 12 RMK10 InnoFund云数据管理系统2011 13 RMK10 InnoFund制造和恢复特定车轮的特定轮子裁缝制造的2011年AREARS(EVAS)2011 15 RMK10 INNOFUND BABAAKREATI CREATITGE E-COMMUNITI MULTIMEDIA MULTIMEDIA CREATITGE E-COMUNITI熟悉Kijang Village 2011 16 RMK10 RMK10 Innofund每一个教授一个(TeamTeach)2011 17 RMK10 RMK10 Innofund肥胖肥胖肥胖肥胖症学校:一个令人震惊的社区项目,以解决令人震惊的肥胖症,以解决令人震惊的obesity Schoolsion,这是一个令人震惊的问题孩子们。2011 18 RMK10 InnoFund代理中型扩张(PMX)2011 19 RMK10 Innofund风风风车上车轮(WOW)2011 20 RMK10 INNOFUND IDOLA 2011 21 RMK10 RMK10 INNOFUND负压伤口治疗设备2011使用生物剂量材料的车辆系统。2011
1 简介 增材制造 (AM) 是指通过连接材料从 3D 模型制造零件的工艺 [1]。定向能量沉积 (DED) 是一种特殊类型的金属 AM 工艺,其中激光和金属粉末的交汇会在基材上形成熔融的金属池(熔池),然后冷却以形成固体金属轨道。此过程逐层重复以创建最终部件。与其他金属 AM 工艺相比,DED 以其制造大型工件、构建近净形状以及修复现有零件和铸件的能力而闻名 [2–4]。此外,DED 还用于开发高级材料,例如分级材料 [5],这允许将金属粉末组合用于单个部件的不同位置。因此,AM 技术为制造业带来了重大创新。与传统的减材制造相比,AM 允许无与伦比的灵活设计,并通过仅在需要的地方沉积材料来减少材料浪费 [6]。尽管 DED 具有上述优势,但由于零件质量不可靠,需要改进过程监控和控制才能在整个行业范围内采用。具体而言,零件质量差是由于激光成型对操作和边界参数(包括激光功率)的微小变化高度敏感 [7]。基于反馈的方法有可能动态调整激光功率以减少过程波动,而无需参考特定的、先前测试过的几何形状和沉积历史。非接触式仪器已广泛用于类似应用,因为它们能够在远离沉积区域热量的安全距离处收集信息。由于激光温度高,高熔化温度、高功率激光反射和非层流很容易导致传感器损坏。当考虑成本和易于集成时,使用可见光摄像机进行光束同轴熔池监测仍然是一种方便且经济高效的解决方案,因为许多 DED 沉积头都配备了用于将监测摄像机纳入光学链的端口 [8]。因此,这项工作专注于一种视觉装置,该装置可以通过熔池的能量含量间接检测珠子高度的异常,从而可以预测和纠正与所需沉积结果的潜在偏差。此外,还创建了数据收集和标记管道,以减少数据准备时间。为了预测轨道几何形状的偏差,我们探索了机器学习 (ML) 算法的使用,特别是支持向量回归 (SVR) 和卷积神经网络 (CNN) 的回归。对创建的模型进行了评估,以确定其是否能够集成到边缘设备上,以实现机器的闭环或前馈控制。