由于Sabatier和Senderens在1902年发现了它,因此催化CO X氢化为甲烷(甲烷)已成为理想的模型反应,用于对气体固体界面上催化的基本了解(1)。该反应在各种工业过程中起着至关重要的作用,例如CH 4产生,CO X去除燃料电池中的氢纯化和氨合成过程(2)。由于排气再循环基础设施的进步(见图1a)(3,4),从CO 2或CO 2得出的可持续性CH 4合成的进一步发展为全球能源系统提供了有意义的补充。随着可持续能量驱动的水电解的快速发展(5,6)和CO 2对CO 2的经济可行的降低(7-9),图1A中所示的绿色H 2基于绿色H 2基于CO(7-9)具有关闭碳周期的潜力,因此影响了路线图对碳质量的影响。
核糖体的肽基转移酶中心(PTC)催化肽基转移和释放。它由23S核糖体RNA的域V组成,它通过RNA修饰酶进行了大量修饰,这表明这些修饰在功能上很重要。然而,酶的单个敲除(KO)对细菌生长的影响很小,除了研究RRNA修饰对细胞活力的重要性外,需要KOS的组合。我们的协作成功地构建了菌株,该菌株表现出迄今为止最严重的表型和致命的表现,这表明RRNA修饰酶的条件重要性。此外,在PTC“关键区域”周围缺乏23S rRNA的早期重构表现出催化惰性50s。但是,我们的合作构建了一个菌株,所有鉴定的关键区域修饰酶KOED。该菌株是可行的,并且在暗示PTC周围修饰的酶的可塑性时表现出最小的生长不足。尽管这些KO菌株的表型已经很好地表征了,但此类缺陷的分子解释仍然不清楚。在这里,基于生化方法,我指出了酶KO会影响核糖体组装和易位,而不是在两个组合的KO菌株中,而不是肽键的形成或释放。这些结果阐明了神秘的rRNA修饰的重要性和作用。尽管建议在生理pH下进行水解速率限制步骤,但证据是间接的。释放也是通过PTC催化的,并且了解限制速率的步骤可以帮助遗传工程,因为终止密码子的读取可以掺入不自然的氨基酸并治疗遗传疾病。在这里,我使用氟修饰的氨基酸激活了酯电力。在较低pHS处与活化酯的释放反应加速度为限制速率水解的直接证据。肽基转移和释放的机械研究主要基于50S亚基的晶体结构。然而,两个模型反应在50年代均显示出比70年代慢的速度速率,从而质疑其相关性。在这里,我优化了肽基的转移和释放模型反应,尽管在有机溶剂中,但对近物生理速率进行了优化。通过用PEG代替有机溶剂来实现的一种更生理的溶液,可以最能加速肽基转移,但不能释放。这些优化的反应应有助于分析合成核糖体/PTC的活性,并深入了解核糖体的演变。
增加特异性的方法的方法之一和细胞抑制药物的生物相容性是与氧化石墨烯的结合物的创造。石墨烯及其氧化形式 - 氧化石墨烯(GO) - 由于其反应性和发育的表面,可以进行共价和非共价功能化,因此已成为纳米医学领域的新材料,这允许提供药物的固定化。本文致力于一种基于GO的非共价偶联物的生物相容性的合成,鉴定和研究的新方法,以及基于1,3,5-三嗪的烷基化剂。偶联物是血液相容的(在1-200 mg∙l 1中,溶血程度不超过5%),在模型反应中表现出抗氧化活性,与DPPH,降解量降低1.7倍,在GO-1 75 mg 1的最大浓度下降低了1.7倍,并具有1.7倍的浓度,并依赖于75 mg l 1 l 1)。并且还对细胞系A549,PANC-1和HELA表现出细胞毒性。最大细胞毒性显示在HeLa细胞系中(IC 50 = 2.5 L m)。2023由Elsevier B.V.
光射流。典型的光阳极,dibenzo [b,d]噻吩磺酸(FSO)单体,与额外的富含电子或电子decoient coenters共同聚合,即,苯烯,吡啶基,吡咯乙烯和四苯二苯,形成d - 一个基序。此外,制备了FSO的均聚物,发现水是水氧化的最高性能。随后,该FSO光阳极进一步用于氧化有机合成。我们能够将光阳极用于两个模型反应;特定的cally,通过氧化苯胺的氧化和通过甲基苯基硫DE的氧化和相应的选择性合成N-苯二烯苯甲酰胺的合成,并分别实现了高达92%和99%的选择性。进行了稳态和操作测量中的测量,以建立结构 - 聚商结构之间的性质关系及其在光阳性反应中的性能。在这些系统中,主动位点确定了这种转换的速率:通过测量结果,我们确定FSO光轴在其磺基群上积累光激发电荷有效,从而为氧化反应带来了最佳性能。这项工作是一项概念验证研究,用于采用成本效率的聚合物半导体通过常规合成来构建PEC系统。此外,它突出了设计聚合物结构的战略方法,从而改善了有机合成的太阳能转换以及选择性和产量。
b'abstract:与乙烯基连接的二维聚合物(V-2DPS)及其层堆叠的共价有机框架(V-2D COF)具有高平面内\ XCF \ XCF \ x80-Conjugation和Robobs框架的能量候选候选者。但是,当前的合成方法仅限于产生缺乏加工性的V-2D COF粉末,阻碍了它们进入设备,尤其是在依赖薄膜的膜技术中。在此,我们报告了通过knoevenagel多凝结的乙烯基链接阳离子2DPS膜(V-C2DP-1和V-C2DP-2)的新型水上表面合成,可作为高度可逆且基于耐用锌的Dual-iro-ion patchies(Zdibs)的阴离子选择性电极(作为阴离子)。模型反应和理论建模揭示了水面上knoevenagel反应的反应性和可逆性的增强。在此基础上,我们证明了对V-C2DPS膜的水表面2D多浓度,该膜显示出较大的侧向尺寸,可调厚度和高化学稳定性。代表性地,V-C2DP-1作为完全结晶和面向面的膜,具有A = B 43.3 \ XC3 \ X85的平面晶格参数。从定义明确的阳离子位点,定向的1D通道和稳定的框架中获利,V-C2DP-1膜具有优质的Bis(Trifluoromethanesulfonyl)Imide阴离子(TFSI)inImide(TFSI) - 转移率(T_ = 0.85),用于高空ZDIBS,从而在高空zdibs中进行transpertion andercation transportive and-Interc Zdib and Fratsion trande trander-dranscation-intrance zdib and。促进其特定能力(从〜83到124 mahg 1)和骑自行车寿命(> 1000个循环,能力保留95%)。
在过去的二十年里,AuNP 在生物医学应用、[1] 传感器[2] 和光子学等许多应用领域引起了极大的关注。[3] AuNP 在催化方面也被证明具有巨大的潜力。[4] AuNP 已被广泛合成并作为各种反应的催化剂进行研究,例如 CO 氧化、[5] 醇的需氧氧化、[6] 氢化、[7] 偶联反应[8] 和还原反应。[9] AuNP 在高催化活性、简单纯化、易于回收和可再利用方面表现出优异的性能,在工业应用中得到了广泛的应用。作为一个经典的模型反应,在硼氢化钠 (NaBH 4 ) 的帮助下,硝基苯酚还原为氨基苯酚的反应经常被用来评估 AuNP 的催化活性。 [10] 先前的研究报告称,AuNP 的尺寸、[11] 形状[12] 和封端配体 [13] 在催化活性中起着至关重要的作用,是决定反应速率的关键因素。例如,Fenger 的研究表明,如果 AuNP 的尺寸在 3.5 至 56 纳米之间,则 13 纳米 CTAB 封端的 AuNP 对硝基苯酚还原表现出最高的催化活性。[11b] Zboril 及其同事证明,尺寸减小的金纳米粒子对相同反应的催化活性会增加。[14] 已经证明,较小的粒子比较大的粒子活性高得多,因为它们的表面积更大。据我们所知,目前只有极少数文献发表了关于具有相同总表面积(即ΣNiAi=ΣNjAj,Ni、Nj分别为粒子i和j的数量,Ai、Aj代表单个纳米粒子i和j的表面积)但不同粒径的AuNP尺寸对硝基苯酚还原反应的影响。例如,Puntes等人描述,如果AuNP具有良好控制的十面体形貌,[11e]则AuNP的活性会随着尺寸的增加而降低。有研究表明,金原子在较小纳米粒子上的配位性比在较大纳米粒子上的低。本研究旨在从不同角度进行详细研究,以了解AuNP的表面积和结构对其催化行为的影响。为此,用不同尺寸的AuNP进行催化硝基苯酚还原。条件是不同尺寸的AuNP的总表面积保持不变。为了将这一发现放在更广泛的数据基础上,我们用两种不同的封端配体,柠檬酸盐 (Ct) 和聚乙烯吡咯烷酮 (PVP) 进行了实验。