图1。使用变压器模型生成样品嵌入/分类和上下文敏感分类单元嵌入的工作流程。输入(a)是表示为相对丰度向量的样本,首先要经过预处理步骤(b),以生成变压器模型(d)的文本样输入(c)。变压器模型生成样品嵌入(H Cls),该样本嵌入(H Cls)通过样本分类层(E)产生特定任务样本级别预测(F)。变压器模型还为样本中每个分类单元生成上下文敏感嵌入(G)。出现在不同样本中的相同分类单元可能会因上下文差异而具有不同的嵌入。
- 简介 - 什么是生成式人工智能,为什么它对数据专业人员很重要?- 生成式人工智能模型和技术的主要类型有哪些?- 生成式人工智能的主要挑战和局限性是什么?- 文本生成式人工智能 - 如何使用自然语言处理和自然语言生成来创建和操作文本数据 - 文本生成任务的示例,例如摘要、释义、翻译和内容创建 - 演示:使用预先训练的生成模型生成文本 - 代码生成式人工智能 - 如何使用代码分析和代码合成来创建和改进代码数据 - 代码生成任务的示例,例如代码完成、代码文档、代码调试和代码优化 - 演示:使用预先训练的生成模型生成代码 - 结论 - 会议要点和收获总结 - 观众的问答和反馈
- 简介 - 什么是生成式人工智能,为什么它对数据专业人员很重要?- 生成式人工智能模型和技术的主要类型有哪些?- 生成式人工智能的主要挑战和局限性是什么?- 文本生成式人工智能 - 如何使用自然语言处理和自然语言生成来创建和操作文本数据 - 文本生成任务的示例,例如摘要、释义、翻译和内容创建 - 演示:使用预先训练的生成模型生成文本 - 代码生成式人工智能 - 如何使用代码分析和代码合成来创建和改进代码数据 - 代码生成任务的示例,例如代码完成、代码文档、代码调试和代码优化 - 演示:使用预先训练的生成模型生成代码 - 结论 - 会议要点和收获总结 - 观众的问答和反馈
摘要:作为基础模型(FMS)量表,他们面临着数据瓶颈,高质量的互联网数据的增长无法跟上他们的培训需求。这已经是文本数据最明显的,在诸如体现智能之类的领域中一直是一个一致的问题,并有望很快施加其他方式。自我改进,一种范式,其中模型生成和训练了从相同或其他模型生成的合成数据,它提供了有希望的解决方案。这种范式与依赖于人类数据的监督学习和依赖于外部奖励的强化学习(RL)不同。自我完善框架需要模型来自我策划的培训数据,通常会使用不完美的学习验证者和独特的挑战。本研讨会将探索用于自我完善的算法,涵盖诸如合成数据,多模式和多模式系统,弱至较大的概括,推理时间自学和理论限制等主题。
抽象的大语言模型(LLMS)在广泛的认知任务中表现出非凡的表现,但是它们重现人类语义相似性判断的能力仍然存在争议。我们报告了一个实验,其中我们将两个LLM用于Slovene,单语插槽5和多语言MT5以及MT5用于英语,以产生单词关联。这些模型是对在单词项目中创建的人词协会规范进行微调的,该规范最近开始收集Slovene的数据。由于我们的目的是探索人类和模型生成的输出之间的差异,因此对模型参数进行最小调整以适合关联任务。我们使用一组方法来测量重叠和排名进行自动评估,此外,将人类和模型生成的响应的子集手动分为四个类别(含义 - 基于位置和表单,基于位置和形式,并且不稳定)。的结果表明,人机重叠非常小,但是模型产生的关联类别分布与人类类似。
•生成模型产生的文本通常是由于模型的功能没有经典的窃。然而,如果您假定自己不重要的文本的权限,则使用生成的文本可以代表科学不当行为。此外,可能会出现文本是由代表窃窃的模型生成的,因为它们的措辞已经匹配已经发布的文本。检查这是您的责任。