从进展看,特斯拉居首,且从芯片、数据训练、大模型到本体制造、运控模型均自研自产,25年已制定千台量 产目标。其次为英伟达,其具备强大的算力能力+数据训练平台优势,利用微软芯片、数据、大模型、开发平 台,为人形机器人公司打造底层开发生态,已与14家人形公司合作。其次为Google,从放弃本体聚焦机器人 大模型,到再次牵手机器人公司合作下一代人形机器人,具备大模型能力。 OpenAI目前通过投资和自己小规模 研发机器人本体,尚未All in。苹果和Meta目前专注机器人细分感知领域,平台推出机器人感知系统ARMOR 可用于机械臂,Meta此前收购Digit触觉传感器团队。
摘要 由于人工智能主要关注知识表示和推理,它必然要处理各种处理不确定性的框架:概率论,以及更新的方法:可能性理论、证据理论和不精确概率。本章的目的是提供一个介绍性的概述,揭示表示不确定性的两个基本框架的具体特征:概率论和可能性理论,同时强调表示不确定性的任务所面临的主要问题。这一目的还提供了定位相关主题的机会,例如粗糙集和模糊集,它们分别受到考虑语言选择引起的表示粒度和自然语言谓词的渐进性的驱动。此外,本概述还简要介绍了其他理论表示框架,例如形式概念分析、条件事件和排名函数,以及可能性逻辑,与此处讨论的不确定性框架有关。本卷的下一章将讨论更复杂的框架:信念函数和不精确概率。
1 引言和概述 1 1.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 李群 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................... 11 1.6 进一步阅读 . .................................................................................................................................................... 11
体积图形是计算机图形学的一个新兴子领域,涉及体积建模对象的合成、操作和渲染,这些对象存储为体素的体积缓冲区。与主要关注采样和计算数据集的体积可视化不同,体积图形主要关注建模的几何场景,尤其是那些在常规体积缓冲区中表示的场景。体积图形比表面图形具有优势,因为它独立于视点,对场景和对象的复杂性不敏感,并且适合表示采样和模拟数据集及其与几何对象的混合。它支持内部结构的可视化,并有助于实现块操作、CSG 建模和分层多分辨率表示。与体积缓冲区表示相关的问题,例如离散性、内存大小、处理时间和几何表示丢失,与光栅图形作为矢量图形的替代技术出现时遇到的问题如出一辙,可以通过类似的方式缓解。
摘要 光标、头像、虚拟手或工具以及其他渲染的图形对象使用户能够与计算机(如 PC、游戏机或虚拟现实系统)进行交互。我们从用户的角度分析了这些不同对象在“用户表征”统一概念下的作用。这些表征是虚拟对象,它们人为地扩展了用户的身体,使他们能够通过执行不断映射到其用户表征的运动动作来操纵虚拟环境。在本文中,我们确定了一组与不同用户表征相关的概念,并对用户表征的控制和主观体验背后的多感官和认知因素进行了多学科回顾。这些概念包括视觉外观、多模态反馈、代理感、输入法、近体空间、视觉视角和身体所有权。我们进一步为这些概念提出了研究议程,这可以引导人机交互社区以更广泛的视角来了解用户如何通过他们的用户表征进行感知和交互。
ASCII 是一种允许计算机相互理解和通信的标准。在 ASCII 中,每个字符(字母、数字和符号)都有其独特的代码。例如,字母“A”用二进制数 01000001(65)表示,而“a”用二进制数 1100001(97)表示。该系统帮助计算机了解在屏幕上显示哪些字符或如何将它们存储在内存中。因此,当您在键盘上键入字母时,计算机会将其转换为相应的 ASCII 代码以了解您在说什么。ASCII 使计算机能够相互通信,也使我们通过键入的文本与计算机轻松交互。另一种编码方案是 Unicode,这是一种较新的标准,通过为每个字符分配 16 位来克服 ASCII 可以表示的字符数的限制。扩展 ASCII 是 Unicode 的子集(包含其前 256 个字符)。 Unicode 的目标是为每个字符提供一个唯一的编号,无论平台、程序或语言如何,从而为文本表示创建一个全球标准。
定理 1.1 为已知条件,即形式 a : V × V → R ,由 a ( u, v ) = ⟨A u, v ⟩ V ∗ ,V 给出,但是这里给出的非对称情况的估计更加苛刻。在定理 1.1 中,不仅解的适定性而且最大规律性都是显著的:发展方程的所有三个项 u ′ 、A u 和 f 都在空间 L 2 (0 , T ; U ′ ) 中(有关此类规律性的更多信息,请参阅 [6])。本文中发展的导子理论可应用于完全不同的主题。如果我们根据 Riesz 定理识别 V 和 V ′,则 V 上的稠密定义算子 S 是对称的当且仅当 iS 是导子。事实证明,我们关于边界算子的结果也允许描述对称算子 S 的所有自联合扩展。事实上,我们完善了文献中已知的边界三元组理论的一个版本。这些思想的循环在 [5] 中介绍。
NLP组件用于阿拉伯语的财务报告处理。将研发支出的轨迹与SEC报告中的收益相抵触,以评估技术对财政绩效的直接影响。评估SEC文件中对技术公告的股票响应波动,评估市场对技术进步的估值。