EPC Space FBS-GAM02-P-R50 系列抗辐射多功能电源模块采用 eGaN ® 开关功率 HEMT,设计用于商业卫星空间环境。这些模块包括两个输出功率开关、两个高速栅极驱动电路(完全由 eGaN ® 开关元件组成)、两个带防直通逻辑的功率肖特基二极管钳位元件(用于半桥连接)和一个 +5 V DC 栅极驱动偏置“电源良好”监控电路,采用创新、节省空间的 18 针 SMT 模塑环氧封装。数据表参数保证“辐射后效应”,采用 EPC Space 100% 逐晶圆 eGaN ® 元件抗辐射强度保证验证材料。电路设计符合美国专利 #10,122,274 B2。商业评级 9A515.x 设备。
与当今最好的 CFM56 发动机相比,它具有世界一流的可靠性和无与伦比的性能,油耗降低了 15%,同时保持了相同水平的调度可靠性和生命周期维护成本。LEAP 发动机的调度可靠性高达 99.98%,这意味着飞行时间更长,维护时间更少。此外,它采用 3D 编织技术,即其风扇叶片由 3D 编织 RTM(树脂传递模塑)碳纤维复合材料制成,这是 CFM 的业内首创。这种技术生产的风扇叶片不仅重量轻,而且非常耐用,每个叶片都足以支撑空客 A350 或波音 787 等宽体飞机的重量。它是第一款使用增材制造来“制造”复杂、全致密但更轻的发动机。它的燃油喷嘴比以前的型号轻 25%,耐用性是传统制造的部件的五倍。 LEAP 碎屑抑制系统提供最佳的侵蚀保护,防止沙子、污垢、
混合材料在发动机设计中引起了人们的关注和兴趣。对于目前的一些发动机,风扇叶片的核心体由 3D 编织复合材料组成,而前缘则由钛制成。这些复杂复合翼型的制造通常涉及漫长的工艺过程,这些工艺过程是将树脂注入最初装有增强预制件的模具中(RTM 工艺 - 树脂传递模塑)。用于优化和控制工艺的相关成型工艺模拟通常与实际情况有很大不同,因为输入物质材料参数在空间和时间上都存在重大变化,而这些变化在模拟中没有考虑(或没有得到很好的考虑)。目前,空客和波音公司正在努力通过监控技术和RTM工艺的建模与仿真来提高复合材料制造工艺的稳健性和可靠性。因此,为了能够控制工艺并确保高质量的部件成型,制造系统(即注射工艺)应实时适应输入物质特性的变化条件,也适应工厂的任何变化甚至客户的需求。
混合材料在发动机设计中引起了人们的关注和兴趣。对于目前的一些发动机,风扇叶片的核心体由 3D 编织复合材料组成,而前缘则由钛制成。这些复杂复合材料翼型的制造通常涉及漫长的过程,首先将树脂注入最初由增强预制件填充的模具中(RTM 工艺 - 树脂传递模塑)。用于优化和控制工艺的相关成型工艺模拟通常与现实有很大不同,因为输入物质材料参数在空间和时间上都存在重要变化,而这些变化在模拟中没有(或很少)考虑。目前,空客和波音公司正在努力通过监控技术和RTM工艺的建模与仿真来提高复合材料制造工艺的稳健性和可靠性。因此,为了能够控制工艺并确保高质量的部件成型,制造系统(即注射工艺)应实时适应输入物质特性的变化条件,也适应工厂的任何变化甚至客户的需求。
Space-EP 器件与标准目录产品相比具有以下优势:• 受控基线,一个晶圆厂、一个装配站点、一套材料。• 优化材料组,包括芯片连接、模塑化合物、引线框架和键合线,全部经过选择以最大程度提高可靠性。• 无高锡(>97% Sn)结构,包括端子(SnAgCu 焊球和 Matte-Sn 电镀)或内部封装组件(芯片凸块或基板电镀)。• 无铜键合线。产品采用倒装芯片安装(无键合线)或使用金键合线。• 额外的装配处理,包括 100% 温度循环或 100% 单程回流模拟代替温度循环。• 在目标温度范围(–55°C 至 +125°C)内进行特性分析。• 在室温和高温下均采用标准参数测试,并带有保护带以确保低温下的数据表限制。• 装配批次验收,包括 X 射线抽样和 CSAM 抽样。• 使用 MIL-PRF-38535 QML Class V 作为基线进行晶圆批次验收。
基于联合研究项目的良好结果,阿博格和迪芬巴赫将合作提供混合复合材料部件成型系统。这两家公司是参与 MoPaHyb 项目(经济型高性能混合结构制造模块化生产工厂的简称)的 14 个合作伙伴中的两个,该项目由德国联邦教育和研究部 (BMBF) 资助。在 Fraunhofer ICT 测试了一个生产系统,该系统结合了配备纤维直接复合 (FDC) 的阿博格模块化注射单元、迪芬巴赫 3600 公吨立式压机、迪芬巴赫 Fiberforge 热塑性单向铺带系统、Kuka 六轴机器人、西门子控制器和其他组件。该项目的测试部件是汽车座椅靠背和车身底部部分。Arburg 的 FDC 技术将连续纤维粗纱送入注射筒,可直接控制纤维长度和浓度。垂直压机可轻松插入 UD 带或几何增强材料(如用于局部增强的肋状结构)。根据 MoPa-Hyb 项目的结果,迪芬巴赫将提供其垂直传递模塑压机与 Arburg FDC 装置的组合。
基于联合研究项目的良好结果,阿博格和迪芬巴赫将合作提供混合复合材料部件成型系统。这两家公司是参与 MoPaHyb 项目(经济型高性能混合结构制造模块化生产工厂的简称)的 14 个合作伙伴中的两个,该项目由德国联邦教育和研究部 (BMBF) 资助。在 Fraunhofer ICT 测试了一个生产系统,该系统结合了配备纤维直接复合 (FDC) 的阿博格模块化注射单元、迪芬巴赫 3600 公吨立式压机、迪芬巴赫 Fiberforge 热塑性单向铺带系统、Kuka 六轴机器人、西门子控制器和其他组件。该项目的测试部件是汽车座椅靠背和车身底部部分。Arburg 的 FDC 技术将连续纤维粗纱送入注射筒,可直接控制纤维长度和浓度。垂直压机可轻松插入 UD 带或几何增强材料(如用于局部增强的肋状结构)。根据 MoPa-Hyb 项目的结果,迪芬巴赫将提供其垂直传递模塑压机与 Arburg FDC 装置的组合。
摘要:高纵横比聚合物材料广泛应用于从服装等日常材料到工业和医疗领域的专用设备等各种应用领域。传统的制造方法,如挤压和模塑,在整合各种材料和实现复杂几何形状方面面临挑战。此外,这些方法在提供低成本和快速原型设计方面的能力有限,而这对于研发过程至关重要。在这项工作中,我们研究了使用市售的 3D 打印机来制造纤维预制件,然后将其热拉成纤维。通过优化 3D 打印参数,我们成功制造了直径小至 200 µm 且形状复杂、特征精确到几微米的纤维。我们通过从各种材料中制造纤维(例如具有不同刚度的纤维和具有磁性的纤维)证明了这种方法的多功能性,这有利于开发肌腱驱动和磁驱动的机器人纤维。此外,通过设计新颖的预制件几何形状,我们生产了锥形纤维和具有互锁机制的纤维,也适用于医疗可控导管应用。这些进步凸显了这种方法的可扩展性和多功能性,为生产用于各种应用的高精度聚合物纤维提供了一个强大的平台。关键词:增材制造;3D 打印;预制件制造;热拉伸;多材料纤维;功能纤维;纤维致动器
扁平无引线 (QFN) 半导体封装是增长最为稳定的芯片载体类型之一,随着原始设备制造商 (OEM) 努力将更多的信号处理功能放入更小的空间,预计 QFN 封装将继续增长。由于 QFN 封装体积小、尺寸紧凑、输入/输出高、散热性好,因此成为芯片组整合、小型化和高功率密度芯片的热门选择,尤其是汽车和射频市场。与任何封装一样,可靠性至关重要,由于 QFN 封装被广泛接受,OEM、集成设备制造商 (IDM) 和外包组装和测试供应商 (OSATS) 要求继续提高 QFN 封装的可靠性。化学工艺处理铜引线框架的表面,以增强模塑化合物的附着力,并减少芯片封装中的分层,从而提高 QFN 封装的可靠性。这些化学工艺导致铜表面微粗糙化,同时沉积一层耐热薄膜,增强环氧封装材料和引线框架表面之间的化学键合。通常,这种工艺可以可靠地提供 JEDEC MSL-1 性能。虽然这种化学预处理工艺在分层方面提供了更好的性能,但它会给引线框架封装商带来其他挑战。表面粗糙度的增加会加剧芯片粘接粘合剂渗出(环氧树脂渗出或 EBO)的趋势,导致银填充粘合剂分离并对封装质量和可靠性产生负面影响。此外,渗入引线框架表面的任何环氧树脂都会干扰其他下游工艺,例如向下粘合或模塑料粘合。
摘要:目前,复合材料在工程和技术的各个方面都发挥着重要作用,其应用范围不断扩大。最近,人们更加关注天然填料,因为它们适合作为热塑性基质中的增强材料,从而改善这些聚合物的机械性能。生物填料因其成本低、强度高、无毒、可生物降解和易得而得到使用。目前,咖啡渣 (SCG) 作为天然填料越来越受到关注,因为每天都会产生大量的 SCG(咖啡加工产生的食品废料)。这项研究使我们能够确定具有已知技术和工艺参数的活性污泥微生物对含有咖啡渣填料的复合材料机械性能的长期影响。配件由用作基质的高密度聚乙烯 (PE-HD) 和用作改性剂的基于咖啡渣 (SCG) 的填料组成。已确定复合材料的组成及其在生物反应器中的停留时间直接影响接触角值。接触角值的变化与测试材料上生物膜的形成有关。在生物反应器中测试的所有样品的接触角都有所增加,样品 A (PE-HD) 的最低值约为 76.4 度,其余含有咖啡渣填充物的复合材料样品的接触角较高,约为 90 度。研究证实,复合材料中咖啡渣的比例增加会导致微生物的多样性和丰富度增加。在生物反应器中暴露一年多后,含有 40% 咖啡渣的复合材料的微生物数量最多,多样性也最强,而含有 30% SCG 的复合材料位居第二。纤毛虫(Ciliata),尤其是属于 Epistylis 属的固着纤毛虫,是活性污泥和生物反应器中样品浸入生物膜后观察到的最常见和数量最多的微生物群。所进行的研究证实,使用聚合物复合材料模塑件和废咖啡渣形式的填料作为载体可以有效增加生物反应器中的微生物种群。