摘要 - 大气光散射包含复杂的物理过程,包括各种散射机制和光学参数。应对破译这种现象的计算密集任务所带来的挑战,这项研究引入了有效的实时仿真策略。所提出的方法采用物理驱动的大气建模,利用统一的相位函数模仿瑞利和MIE散射现象。使用射线制定的概念来解决散射积分,将散射积分近似并离散。基于不同光源的特征,确定了准确的射线建设长度,从而简化了光路的计算轨迹。此外,纹理抖动的引入增强了初始采样位置的随机性。阴影地图算法擅长生成阴影映射纹理,从而消除了阴影区域内的光计算的需求,从而减少了样本数量和计算工作负载。最后,颜色合成用于确定在各种雾密度条件下大气的渲染颜色。实验结果表明,与其他先进的光散射渲染方法相比,这种方法可显着提高渲染效率,并实现实时渲染,同时保持逼真的光散射效果。
需求,可能会溢出可用的资源和能力。可以在患者附近提供体外诊断和直接健康信息,而无需培训良好的技术人员和实力基础设施,这在很大程度上证明是患者跟踪的最佳解决方案,[2,3]患者的自我诊断,自我监测和质量改善了生活质量,因此,可以提供良好的技术人员和实力良好的解决方案。[4-6]此外,它促进了早期发现和开始治疗,这可以大大降低复杂的风险,包括心脏病,肾衰竭,失明甚至死亡。如今,大多数商业可用的POC设备都采用了Col-Orimetric技术,这些技术仅提供最小的“是/否”答案或半标准分析,并可能导致人为错误。[7,8]另外,还可以使用数字POC设备。但是,它们是可负担的,也是可持续的,并导致电气和电子设备(WEEE)的浪费增加。[9,10]尽管POC诊断的分析性能已大大提高,但几个挑战,包括质量评估,系统集成,数据管理解决方案以及最重要的是,权力自治仍然没有解决。[7]这些对于开发可持续且真正独立的POC诊断
近 年 来 , 预 训 练 语 言 模 型 已 逐 渐 成 为 自 然 语 言 处 理 领 域 的 基 座 模 型 。 相 关 实 验 现 象 表 明 , 预 训 练 语 言 模 型 能 够 自 发 地 从 预 训 练 语 料 中 学 到 一 定 的 语 言 学 知 识 、 世 界 知 识 和 常 识 知 识 , 从 而 在 知 识 密 集 型 任 务 上 获 得 出 色 的 表 现 ( AlKhamissi et al., 2022 ; Safavi and Koutra, 2021 ; Petroni et al., 2019 ) 。 然 而 , 预 训 练 语 言 模 型 中 的 知 识 隐 式 地 存 储 在 参 数 之中 , 难 以 显 式 地 对 预 训 练 语 言 模 型 中 的 知 识 进 行 分 析 和 利 用 。 同 时 , 预 训 练 语 言 模 型在 知 识 和 推 理 上 的 表 现 并 不 可 靠 , 常常 会 出 现 “ 幻 觉 ” 现 象 ( Ji et al., 2022 ) , 给 出 与 知 识 冲 突 的 预 测 结 果 。 这 些 因 素 阻 碍 了 预 训 练 语 言 模 型 提 供 可 靠 的 知 识 服 务 。 因 此 , 探 究 模 型 掌握 知 识 的 机 理 、 研 究 如 何 提 取 和 补 充 语 言 模 型 中 的 知 识 成 为 近 期 的 研 究 热点 。 本 次 讲 习 班 主 要 内 容 包 括 预 训 练 语 言 模 型 中 的 知 识 分 析 、 预 训 练 语 言 模 型 的 知 识 萃 取 、 知 识 增 强 的 预 训 练 语 言 模 型 三个 部 分 , 听 众 将 在 本 次 讲 习 班 中了 解 到 近 期 研 究 中 对 预 训 练 语 言 模 型 掌握 知 识 情 况 的 认识 、 从 预 训 练 语 言 模 型 中 提 取 符 号 知 识 的 实 现 方 案 、 利 用 外 部 知 识 增 强 模 型 弥 补 缺 陷 的 各 类 方 法 。
尽管如此,由于文献或材料供应商数据表中关于材料高温 CHS 的报道非常少,因此湿气引起的应力大多被忽略。这是由于缺乏有效的测量方法和该领域的技术知识 [5]。由于测量过程中湿气会快速蒸发,因此测量高温膨胀具有挑战性。市售工具,如带相对湿度附件的动态机械分析仪 (DMA-RH) [5, 6],其温度能力有限,最高可达 85 !C,而典型的无铅焊料回流工艺可高达 260 !C。更高温度的测量在技术上具有挑战性。需要更高的压力来将湿气保持在高温下的液态,而使用当今的标准工具根本无法实现。一种更流行的方法是使用标准热机械分析仪 (TMA) 设备来测量加热时饱和样品的应变。快速解吸会导致湿气分布不均匀。因此,假设应变为平均应变。需要进行额外的水分质量校正后处理分析来补偿水分损失。据报道,这种方法往往会高估 CHS [2, 4]。此外,一些研究建议避免使用基于解吸的方法,因为某些材料可能具有不可逆的吸湿膨胀特性 [7]。另一种尝试过的方法是莫尔干涉法 (MI) [8, 9],它具有良好的准确性和可重复性。然而,它有固有的局限性,因为在样品表面复制的耐腐蚀光栅会导致测量误差,尤其是对于薄样品。此外,所有这些都是
摘要 - 输入法是各个领域中使用最广泛的研究技术之一。通过在光纤上实施干涉仪,光纤干涉仪(FOIS)在过去的四十年中已经获得了巨大的生长和进步,并已探索以测量各种物理,化学,化学和生物学参数。FOI通常是使用单模纤维(SMF)构建的,并使用具有紧密控制的极化状态(SOP)在光学结构域中询问,以确保促进感应应用的高质量干扰信号。单模操作以及SOP的严格要求阻碍了敌人的进一步发展,例如,基于多模纤维(MMF)基于基于的FOI。在本文中,我们介绍了基于光纤的微波光子干涉仪的全面研究,该研究基于最近开发的技术,基于光载体的微波干涉仪(OCMI)。由OCMI审问(即微波炉干涉仪)启用了所提出的感应配置,从本质上讲,通过在微波域中读取FOIS来克服传统FOI的两个限制方面。微波炉干涉仪对光载体SOP的变化免疫,并且对光纤类型(SMFS和MMF)的依赖性较低。我们提出了微波仪干涉系统的完整数学模型。使用SMF和多模聚合物光纤的应变测量验证了所提出的系统的传感能力。然后,使用三种不同类型的干涉仪进行验证,包括Mach-Zehnder干涉仪,Fabry-Perot干涉仪和基于SMFS和MMFS的Michelson干涉仪。微波仪的干涉构构可以在各种传感应用中进一步扩展FOIS的路径。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2024年8月9日发布。 https://doi.org/10.1101/2024.08.08.607260 doi:biorxiv preprint
本文介绍了一种具有集成多模干涉耦合器的新锥形半导体激光器。新激光器的种子来源是多模干扰耦合器半导体激光器,它克服了脊方波导区域中单模式输出与增益中等体积之间关系所带来的局限性。The simulation results show that the multi-mode interference coupler can effectively provide a spatial single- mode seed light source for the tapered output waveguide, and the tapered output waveguide of the tapered semiconductor laser can also effectively reduce the optical power density of the output laser, which verifies the feasibility of the design scheme and provides a new idea for the design of high beam quality and high power tapered半导体激光器。
图 3.29:升降舵偏转信号 ...................................................................................................... 37 图 3.30:方向舵偏转信号 ...................................................................................................... 37 图 3.31:沿 X 方向的速度 B(“u”) ............................................................................................. 38 图 3.32:沿 Y 方向的速度 B(“v”) ............................................................................................. 38 图 3.33:沿 Z 方向的速度 B(“w”) ............................................................................................. 38 图 3.34:滚转速率(“p”) ............................................................................................................. 39 图 3.35:俯仰速率(“q”) ............................................................................................................. 39 图 3.36:偏航速率(“r”) ............................................................................................................. 39 图 3.37:滚转角度(“Phi”) ............................................................................................................. 40 图 3.38:俯仰角度(“Theta”) ........................................................................................... 40 图 3.39:偏航角(“Psi”)................................................................................................... 40 图 3.40:迎角
推荐引用 推荐引用 Kadungoth Sreeraj,Adarsh Raj,“基于滑模控制方法的无模型控制算法及其在无人机系统中的应用”(2019 年)。论文。罗彻斯特理工学院。访问自
量子密钥分发 (QKD) 和超密集隐形传态等量子通信方案为安全地传递信息提供了独特的机会。光通信正日益扩展到自由空间信道,但自由空间信道中的大气湍流需要光接收器和测量基础设施来支持多种空间模式。本文,我们介绍了一种多模迈克尔逊型延时干涉仪,该干涉仪采用场展宽设计,用于测量自由空间通信方案中的相位编码状态。干涉仪采用玻璃光束路径构造,以提供热稳定性、场展宽角度公差和紧凑的占地面积。干涉仪的性能突出,单模和多模输入的测量可见度分别为 99.02 ± 0.05% 和 98.38 ± 0.01%。此外,还展示了针对任意空间模式结构和 ± 1.0 ◦ C 温度变化的高质量多模干涉。干涉仪测得的光路长度漂移接近室温,为 130 nm / ◦ C。借助此装置,我们展示了用于时间相位 QKD 的双峰多模单光子状态的测量,可见度为 97.37 ± 0.01%。