摘要:了解从基于智能手机的电化学发光 (ECL) 传感器提取的多模态数据之间的关系对于开发低成本的即时诊断设备至关重要。在这项工作中,使用随机森林 (RF) 和前馈神经网络 (FNN) 等人工智能 (AI) 算法定量研究 Ru(bpy) 3 2+ 发光体浓度与其实验测量的 ECL 和电化学数据之间的关系。使用一次性丝网印刷碳电极开发了一种带有 Ru(bpy) 3 2+ /TPrA 的基于智能手机的 ECL 传感器。在施加 1.2 V 电压后,同时获得 ECL 图像和电流图。通过 RF 和 FNN 算法分析这些多模态数据,从而可以使用多个关键特征预测 Ru(bpy) 3 2+ 浓度。在 0.02 µM 至 2.5 µM 的检测范围内,实际值和预测值之间实现了高相关性(RF 和 FNN 分别为 0.99 和 0.96)。使用 RF 和 FNN 的 AI 方法能够使用易于观察的关键特征直接推断 Ru(bpy) 3 2+ 的浓度。结果表明,数据驱动的 AI 算法在分析多模态 ECL 传感器数据方面非常有效。因此,这些 AI 算法可以成为建模库的重要组成部分,并成功应用于 ECL 传感器数据建模。
基于人工智能的多维数据库技术是一项新技术。该技术可以实现多模态数据(非结构化数据、半结构化数据、结构化数据)的分布式存储,同时还可以将数据以超立方体的形式存储,并对数据进行实时的多维分析和查询。传统的多维数据库直接从二维表中提取维度信息,没有考虑维度信息之间的关联性。因此,结合人工智能技术,可以实现多模态数据的关联分析,自动生成维度信息。具体而言,针对商业智能(BI)领域对多维数据高效分析、存储和处理的需求,开展基于人工智能的多维数据库技术应用研究,实现多领域异构数据的统一采集,高效、实时、自动标注、聚类,数据信息智能提取及语义关联,超立方体存储和在线分析OLAP、在线分析处理等。设计基于人工智能的多维数据库原型系统,满足海量数据智能分析处理需求。系统学习用户的查询行为模式和数据特征。通过内置机器学习算法构建立方体数据模型。持续进行模型优化,针对特定用户精准生成查询结果。通过分布式算法引擎、混合在线分析处理、分布式存储引擎等人工智能功能模块,整合多源异构数据资源,实现数据关联、智能学习、推理和预测,为管理决策端和业务运营端提供更加完善、可靠的预测决策服务。
为什么有些人更擅长识别人脸?揭示支持人脸识别能力的神经机制一直难以捉摸。为了应对这一挑战,我们使用了一种多模态数据驱动的方法,结合了神经成像、计算建模和行为测试。我们记录了具有非凡人脸识别能力的个体(超级识别者)和典型识别者对各种视觉刺激的高密度脑电图活动。使用多元模式分析,我们从 1 秒的大脑活动中解码了人脸识别能力,准确率高达 80%。为了更好地理解这种解码的机制,我们将参与者大脑中的表征与视觉和语义的人工神经网络模型中的表征以及与人类对形状和含义相似性判断有关的表征进行了比较。与典型识别者相比,我们发现超级识别者的早期大脑表征与视觉模型以及形状相似性判断的中级表征之间存在更强的关联。此外,我们发现超级识别者的晚期大脑表征与人工语义模型表征以及意义相似性判断之间存在更强的关联。总体而言,这些结果表明,大脑处理过程中的重要个体差异(包括超越纯视觉过程的神经计算)支持了人脸识别能力的差异。它们为语义计算与人脸识别能力之间的关联提供了第一个经验证据。我们相信,这种多模态数据驱动的方法很可能在进一步揭示人类大脑中特殊人脸识别的复杂性方面发挥关键作用。
深度卷积神经网络的成功部分归功于海量带注释的训练数据。然而在实践中,获取医疗数据注释通常非常昂贵且耗时。考虑到具有相同解剖结构的多模态数据在临床应用中广泛可用,在本文中,我们旨在利用从一种模态(又称辅助模态)学到的先验知识(例如形状先验)来提高另一种模态(又称目标模态)的分割性能,以弥补注释的稀缺性。为了缓解由模态特定外观差异引起的学习困难,我们首先提出一个图像对齐模块(IAM)来缩小辅助和目标模态数据之间的外观差距。然后,我们提出了一种新颖的相互知识蒸馏(MKD)方案,以充分利用模态共享知识来促进目标模态分割。具体来说,我们将我们的框架制定为两个独立分割器的集成。每个分割器不仅从相应的注释中显式提取一种模态知识,而且还以相互引导的方式从其对应部分中隐式探索另一种模态知识。两个分割器的集合将进一步整合来自两种模态的知识,并在目标模态上生成可靠的分割结果。在公共多类心脏分割数据(即 MM-WHS 2017)上的实验结果表明,我们的方法通过利用额外的 MRI 数据在 CT 分割方面取得了很大的改进,并且优于其他最先进的多模态学习方法。
人工智能无疑改变了学术研究,为数据分析、自动化和新方法的开发提供了强大的工具。虽然好处很多,但要充分发挥人工智能的潜力,解决与人工智能相关的道德和实践挑战至关重要。随着人工智能技术的不断发展,它对学术研究的影响无疑会越来越大,为各个领域的新发现和创新铺平道路。人工智能在学术研究中的未来方向有望提高各个学科研究的效率、范围和影响力。综合人工智能系统将通过多模态数据提供全面的见解
结构和功能性脑网络已成为理解不同脑区之间相互作用以及特定神经系统疾病发病机制的越来越有用的工具。在过去十年中,人们对基于各种模式数据(例如 fMRI、EEG、PET 和 DTI)对脑网络进行建模以及捕捉脑网络的特征表示(例如连接、图拓扑和图神经网络)以了解发病机制的兴趣日益浓厚。由于大脑的复杂性远远超出我们的想象,揭示大脑的奥秘仍然面临许多挑战。因此,关于构建脑网络的多种方法、如何有效利用多模态数据以及如何最好地揭示有关大脑健康和疾病的信息仍然存在争议。网络科学在脑中的应用促进了我们对脑结构和功能组织的理解。此外,在这个框架内研究大脑可以有效地揭示神经系统疾病如何影响脑组织。在本研究主题中,我们力求收集有关脑网络构建、多模态融合、网络学习表征以及通过脑网络进行推理和预测的新发现。更具体地说,本研究主题的目标是通过数学建模促进对脑连接组的现有理解,开发新的和先进的方法来捕捉功能和结构之间的图形关系,有效利用多模态数据,准确学习脑部疾病中网络的表征,从而促进我们对大脑底层结构和动态的理解。从本主题中,我们不难发现,主要工作可以归纳为三类,即利用网络作为新的生物标志物、基于网络的新机器学习模型、新的脑网络估计方法(如图 1 所示)。
硬件技术和分析方法的进步使脑电图 (EEG) 实验具有越来越多的移动性。除了神经活动之外,移动大脑/身体成像 (MoBI) 研究还可以记录各种类型的数据,例如运动或眼动追踪。尽管有可用的选项可以以标准化的方式分析 EEG 数据,但它们并不能完全涵盖来自移动实验的复杂多模态数据。因此,我们提出了 BeMoBIL 管道,这是 MATLAB 中一个易于使用的管道,支持时间同步处理多模态数据。它基于 EEGLAB 和 fieldtrip,由用于 EEG 预处理和随后的源分离的自动化功能组成。它还提供用于运动数据处理和从不同数据模态中提取事件标记的功能,包括使用独立成分分析从 EEG 中提取事件。该管道引入了一种新的稳健方法,用于基于感兴趣区域的独立 EEG 成分的组级聚类。最后,BeMoBIL 管道在各个处理步骤中提供分析可视化,保持分析透明并允许对结果进行质量检查。所有参数和步骤都记录在数据结构中,可以使用相同的脚本完全复制。该流程使(移动)EEG 和身体数据的处理和分析更加可靠,并且不受个别研究人员的先前经验的影响,从而促进了 EEG 的一般使用,特别是 MoBI。这是一个开源项目,可在 https://github.com/BeMoBIL/bemobil-pipeline 下载,允许将来进行社区驱动的改编。
硬件技术和分析方法的进步使脑电图 (EEG) 实验具有越来越多的移动性。除了神经活动之外,移动大脑/身体成像 (MoBI) 研究还可以记录各种类型的数据,例如运动或眼动追踪。尽管有可用的选项可以以标准化的方式分析 EEG 数据,但它们并不能完全涵盖来自移动实验的复杂多模态数据。因此,我们提出了 BeMoBIL 管道,这是 MATLAB 中一个易于使用的管道,支持时间同步处理多模态数据。它基于 EEGLAB 和 fieldtrip,由用于 EEG 预处理和随后的源分离的自动化功能组成。它还提供用于运动数据处理和从不同数据模态中提取事件标记的功能,包括使用独立成分分析从 EEG 中提取眼动和步态相关事件。该管道引入了一种新的稳健方法,用于基于感兴趣区域的独立 EEG 成分的组级聚类。最后,BeMoBIL 管道在各个处理步骤中提供分析可视化,保持分析透明并允许对结果进行质量检查。所有参数和步骤都记录在数据结构中,可以使用相同的脚本完全复制。该流程使(移动)EEG 和身体数据的处理和分析更加可靠,并且不受个别研究人员的先前经验的影响,从而促进了 EEG 的一般使用,特别是 MoBI。这是一个开源项目,可在 https://github.com/BeMoBIL/bemobil-pipeline 下载,允许将来进行社区驱动的改编。
摘要 2019 年底发现的新型冠状病毒 (COVID-19) 疫情需要特别关注,因为它未来可能会流行并可能对全球造成威胁。除了临床程序和治疗外,由于人工智能 (AI) 有望为医疗保健带来新范式,因此人们使用基于机器学习 (ML) 算法的几种不同的 AI 工具来分析数据和制定决策过程。这意味着 AI 驱动的工具有助于识别 COVID-19 疫情并预测其在全球传播的性质。然而,与其他医疗保健问题不同,对于 COVID-19,为了检测 COVID-19,AI 驱动的工具需要具有基于主动学习的跨人群训练/测试模型,该模型采用多模态数据,这是本文的主要目的。
人类大脑在正常和疾病状态下积累的大量多模态数据为理解大脑疾病发生的原因和方式提供了前所未有的机会。与传统的单一数据集分析相比,涵盖不同类型数据(即基因组学、转录组学、成像等)的多模态数据集的整合为从微观和宏观层面揭示大脑疾病的潜在机制提供了更详细的信息。在本综述中,我们首先简要介绍流行的大型大脑数据集。然后,我们详细讨论了如何整合多模态人脑数据集来揭示大脑疾病的遗传倾向和异常的分子通路。最后,我们展望了未来的数据整合工作将如何促进大脑疾病的诊断和治疗。