飞行模拟器有不同的用途。由于硬件限制,全尺寸飞行模拟器通常非常昂贵,并且通常取决于飞机类型。因此,人们发现并研究了使用虚拟现实设计飞行模拟器的需求 [1-2]。训练飞行员最安全、最经济的方式是通过飞行模拟器。模拟器可以帮助飞行员体验各种涉及真实飞行的情况,而无需身临其境,从而避免风险。飞行模拟器的重要部分是所谓的控制负载系统。飞行装置实例的数量用于管理飞机的运动、飞行控制和驾驶舱仪表。该系统包括硬件和软件部分。通过数字计算机上的程序员进行的模拟属于软件,结构研究属于硬件。另外两个软件模块支持模拟,其中一个控制驾驶舱在 6 个自由度上的运动,另一个实现驾驶舱控制上的负载再现系统 [3]。飞行模拟器是人在回路的实时模拟系统,采用控制加载系统模拟飞行员操纵真实飞机时的力感应。全数字控制电控加载系统比液压系统具有技术和成本优势,成为大型模拟器的理想选择 [4]。在过去的几十年里,飞行模拟器在飞行员训练中发挥了重要作用,提高了飞行安全性。目前,飞行模拟器的监管资格标准涉及在规定的容差范围内匹配一组规定的飞行测试数据和各种飞机参数。尽管全面的资格测试指南 (QTG) 验证测试表明模拟与飞行测试数据相匹配,但飞行员有时会抱怨模拟器中的某些机动感觉不像飞机 [5]。
数据中心为互联网供电,使数字通信和连接成为可能。在2022年,全球总能源消耗的1-1.3%用于数据中心。他们在冷却系统中还消耗了很多水。优化其能源和用水的使用是行业的优先事项。本文通过利用基于模拟器的强化学习方法来优化数据中心冷却的能源和用水的方法之一。首先,我们开发了一个基于物理的模拟模型,该模型可以预测MAE 1°F(平均绝对误差)的热行为。然后,将RL模型离线训练,从而制定了控制供应气流设定点的更好政策。我们一个数据中心区域之一的生产模型已显示,在各种天气条件下,供应风扇能源消耗量降低了20%,用水量平均减少了4%。
有限的保修和责任 - 本文档中的信息被认为是准确可靠的。但是,NXP半导体对此类信息的准确性或完整性表示任何表示或暗示的保证,并且对使用此类信息的使用后果不承担任何责任。NXP半导体对本文档中的内容不承担任何责任。在任何情况下,NXP半导体都不应对任何间接,偶然,惩罚性,特殊或结果损害赔偿(包括 - 不受限制 - 利润损失,储蓄损失,业务中断,与任何产品或替换费用相关的成本,任何产品或返回费用有关)是否基于侵权(包括侵权)(包括negligence),违反合同,或其他任何违法行为,或其他任何违法行为。尽管出于任何原因客户可能造成的任何损害,但NXP半导体对此处所述产品的总和和累积责任应受到NXP半导体商业销售的条款和条件的限制。
本文献综述是 EPSRC 资助的“EPSRC 驾驶模拟器中的驾驶员表现:验证研究”项目的一部分。它主要关注与驾驶员行为有关的驾驶模拟器验证研究。迄今为止,已经提出了各种方法、方法论和标准来验证驾驶模拟器的行为和物理。同时,已经进行了许多行为验证研究,其中有或没有考虑所提出的验证方法。作者认为有必要进行本文献综述,因为据她所知,没有其他已发表的评论彻底研究理论(所提出的验证方法和方法论)与实践(驾驶模拟器的验证研究)之间的联系。最近的大多数行为验证研究都集中在模拟器的绝对和相对有效性上,而没有考虑表面有效性的问题。
*任何未包含在此表格中的设备申请必须在培训日期前 90 天提出。完整的培训支持系统 (TSS) - 企业培训辅助设备、设备、模拟器和模拟 (TADSS) 索引和目录位于 TSC。请咨询 TSC 工作人员了解详细信息。
1 引言 目前已经开发出许多驾驶模拟器,其中大多数用于驾驶员培训或驾驶员安全领域的研究 [41]。然而,这些模拟器在交通模拟和用户存在方面往往功能有限 [10,23,24]。人们早就需要关注用户存在的高质量虚拟现实 (VR) 驾驶模拟器。除此之外,具有交通模拟功能的驾驶模拟器是车载自组织网络 (VANET) 研究的强大工具。网络模拟通常用于网络研究,以评估通信协议和算法的性能。现有的车载网络模拟工具仅侧重于网络模拟。结合网络模拟、应用程序原型设计和测试的驾驶模拟器将对 VANET 研究人员大有裨益。例如,人们可以在将研究成果部署到现实世界之前,使用包含数千辆汽车的真实虚拟环境并与它们进行交互,从而评估通信协议或应用程序的性能,但这种方式成本高昂,有时还不安全。我们工作的驱动力是创建一个模拟器,它可以弥合车辆网络研究之间的差距。虚拟现实驾驶模拟器的存在时间与现代 VR 存在的时间一样长 [41]。模拟器通常用于驾驶员培训,具有一致性的优势。模拟器运行实时模拟,其中虚拟环境的所有方面都受到控制。驾驶模拟器的输入被设计为目标车辆的真实模仿,底层模拟器模型模拟用户与目标车辆之间的交互。视觉、听觉和运动输出是常见的形式
与现有的网络功能相比,低地球轨道 (LEO) 网络具有显著优势。与现有的地球静止轨道 (GEO) 卫星网络相比,低地球轨道 (LEO) 网络的延迟要低得多,并且在许多市场上可与地面光纤互联网相媲美,无论是在延迟 [ 29 ] 还是覆盖范围方面(例如,为未连接地面网络的战区提供互联网服务,就像俄罗斯和乌克兰之间的武装冲突 [ 12 ] 中所做的那样)。此外,低地球轨道 (LEO) 卫星还可以执行卫星图像处理等太空原生任务 [ 42 ]。这些趋势反过来又引起了学术界的极大兴趣,从而产生了一系列关于低地球轨道 (LEO) 计算 [ 3 , 5 , 59 ]、网络 [4, 30, 45] 和应用 [19, 64] 的研究。低地球轨道 (LEO) 星座是一种特殊类型的 CPS 基础设施,因此是一种高价值资产。就像关键的地面基础设施(如电网 [ 15 , 61 ] 和数据中心 [ 6 , 35 ])一样,LEO 星座的安全性至关重要,因为它们将成为攻击的主要目标。由于每颗卫星都配备了计算、网络、存储和传感系统,LEO 星座表现出类似的攻击媒介范围。事实上,由于 LEO 星座的独特特性,安全问题被放大了。跨地理区域(包括潜在敌对国家)的移动性,以及地面部署(例如数据中心仓库)缺乏物理边界,导致了进一步的复杂化。LEO 攻击也更难防御
智能手机上的 ASW(反潜战)模拟器 Hyunhui Kim、Jemin Lee、Tesup Kim 和 Kangsun Lee* 明知大学计算机工程系 San 38-2 NamDong,龙仁,京畿道,449-728,韩国 以及 Kyu Cheol Cho、Sung Ho Jang、Tae Young Kim、JongSik Lee 仁荷大学计算机科学与工程学院 #253,YongHyun-Dong,南区,仁川,402-751,韩国 摘要 1 随着现代武器系统变得复杂和昂贵,在实际开发之前预测新武器系统的有效性的需求日益增加。在本文中,我们介绍了一个 ASW(反潜战)模拟器来衡量智能手机上 TAS(拖曳阵列声纳)的有效性。我们的模拟器由红蓝潜艇模型、环境模型(即海)和交战模型组成,以真实地模拟水下战争并据此衡量 TAS 的有效性。已经开发了 Web 服务来将模拟结果发送到智能手机客户端。根据我们进行的实验,在智能手机上模拟武器系统只消耗了有限的内存和电池。我们的工作表明,智能手机可以成为随时随地模拟武器系统的可行设备。关键词:国防建模与仿真、模型可重用性、建模形式主义、标准接口 1.简介 由于现代武器系统配备了高科技传感器和复杂控制器,因此开发成本也相应增加。然而,在现实生活中,期待新武器系统的有效性和投资回报率 (ROI) 几乎是不可能的。SBA(基于模拟的采购)[1] 旨在通过在实际开发和部署新武器系统之前提供其性能和有效性的测量来帮助决策者。随着 SBA 在新武器系统的采购过程中的普及,越来越多的人希望随时随地在各种手持设备上准备好有效性数据。* 通讯作者:所有通信应发送至 ksl@mju.ac.kr
全飞行模拟器在事故调查中的应用 Robin Tydeman 航空事故首席检查员 航空事故调查处 摘要 飞行模拟已经成为航空培训中不可或缺的工具。在短短 50 多年的时间里,它已经建立了高保真度的声誉,并能够提供一个经济、安全地对机组人员进行有效培训的环境。飞行模拟也证明了自己对飞机事故调查员的价值。然而,随着数字控制模拟器和引人注目的视觉系统的出现,人们很容易被所谓的“保真度”所欺骗。任何对模拟的依赖都会引发对后续结论有效性的合理质疑,并可能对整个调查的技术真实性产生怀疑。本文建议,在事故调查中使用飞行模拟时应谨慎,承认模拟器有局限性。在事故调查中,飞行模拟器的传统用途是使用飞行数据记录器 (FDR) 的数字数据对模拟器进行编程,模拟器通常是固定基座工程模拟器,然后模拟器将复制飞机的飞行。还可以结合空中交通管制雷达、TCAS 装置和驾驶舱语音记录器的数据。这样,调查人员就能掌握完整的情况!但是,这样做的准确度如何呢?
为 ATC 学生设定了各种教学目标,以帮助提高他们的信心。模拟器训练包括紧急程序和援助、特定地点的定位、用语、程序和协调、团队合作、跑道标记和飞行数据。因此,模拟器训练有助于建立信心,因为 ATC 学生要处理高强度的交通问题和复杂的跑道配置(Taylor 等人,2)。模拟器训练很重要,因为它使管制员具备必要的技能、准备和信心来处理高压情况,例如各种天气条件下的尾流湍流。ATC 学生还学习如何处理交叉跑道和平行跑道上同时到达和离开的情况。模拟器训练通常教授预期的分离、精确的计时和任务的优先级。这些模拟训练节点确保管制员可以使用有节奏的无线电传输,同时使用最小跑道离场分离。模拟训练作为空中交通管制训练的教学补充,有助于培养信心。基于模拟器的训练提高技能