背景 为了应对日益严重的过时和维护成本增加的挑战,核电公司正在更换和升级选定的 I&C 设备。升级通常涉及从模拟技术到数字技术的转变,成熟的商业产品通常提供实用的解决方案。然而,随着数字设备用于安全相关应用,新的问题也随之而来,包括冗余组件的共模故障、电磁干扰 (EMI) 和人机界面问题的可能性。当使用商用现成软件时,会出现额外的复杂情况,主要与证明供应商的软件开发流程和文档的充分性有关。核电公司通常用于评估和接受用于安全相关应用的商业组件的商用级项目专用流程在开发时并未考虑到基于软件的设备。因此,对于基于软件的系统,公用事业公司需要一种共识方法来帮助标准化商业设备的处理,同时确保安全性、可靠性和成本效益。
高维分数阶反应扩散方程在生物学、化学和物理学领域有着广泛的应用,并表现出一系列丰富的现象。虽然经典算法在空间维度上具有指数复杂度,但量子计算机可以产生仅具有多项式复杂度的量子态来编码解决方案,前提是存在合适的输入访问。在这项工作中,我们研究了具有周期性边界条件的线性和非线性分数阶反应扩散方程的高效量子算法。对于线性方程,我们分析和比较了各种方法的复杂性,包括二阶 Trotter 公式、时间推进法和截断 Dyson 级数法。我们还提出了一种新算法,该算法将汉密尔顿模拟技术与交互图像形式相结合,从而在空间维度上实现最佳缩放。对于非线性方程,我们采用 Carleman 线性化方法,并提出了一种适用于分数阶反应扩散方程空间离散化产生的密集矩阵的块编码版本。
量子算法的实现和实用性在很大程度上取决于量子处理器内操作的质量。因此,在量子计算模拟平台中包含真实的错误模型对于测试这些算法至关重要。现有的经典量子信息处理设备模拟技术在可扩展性(可以模拟的量子比特数)和准确性(模拟与目标错误模型的接近程度)之间表现出权衡。在本文中,我们介绍了一种新的模拟方法,该方法依赖于在纯态模拟环境中通过单元和测量通道的随机和来近似密度矩阵演化。与已知的最佳随机方法相比,该模型在准确性方面至少提高了一个数量级,同时允许模拟比精确密度矩阵模拟更多的量子比特。此外,我们使用这种方法逼真地模拟了 Grover 算法和表面代码 17,使用门集层析成像表征量子操作作为噪声模型。
背景为了应对日益严重的过时和维护成本增加的挑战,核电公司正在更换和升级某些 I&C 设备。升级通常涉及从模拟技术到数字技术的转变,成熟的商用产品通常提供实用的解决方案。然而,随着数字设备用于安全相关应用,新的问题也随之而来,包括冗余组件的共模故障、电磁干扰 (EMI) 和人机界面问题。当使用商用现成软件时,会出现额外的复杂情况,主要与证明供应商的软件开发流程和文档的充分性有关。核电公司通常用于评估和接受用于安全相关应用的商用组件的商用级项目专用流程在开发时并未考虑到基于软件的设备。因此,对于基于软件的系统,核电公司需要一种共识方法来帮助标准化商用设备的处理,同时确保安全性、可靠性和成本效益。
移动网络的演变代表了过去几十年中最具变革性的技术旅程之一。从第一代网络的成立到预期的第六代系统的推出,这一进化的每个阶段都大大改变了我们与世界的交流,工作和互动的方式。本文探讨了移动网络的发展,研究了从1G到即将到来的6G的关键发展及其对社会和技术的深远影响。移动网络的旅程始于第一代无线通信技术1G。1G网络以模拟技术为特征,提供了基本的语音通信服务。这些网络在很大程度上受到功能限制,仅提供声音质量相对较差和没有数据服务的语音呼叫。1G的主要优点是它能够在广泛区域提供移动语音通信的能力,这是有线电话的限制的重大进步。但是,1G系统受到诸如覆盖范围有限,功耗高和干扰易感性等问题的困扰。
摘要 在过去三年中,位于堪萨斯州莱文沃思堡的指挥与参谋学院和训练与条令司令部分析中心以及训练与条令司令部陆军实验/转型计划办公室赞助了多项培训活动,使用先进的模拟技术来推动参谋培训活动。推动这些活动的设备和软件套件被称为数字领导者反应课程 (DLRC)。DLRC 的主要目标是训练战斗人员利用信息战的进步来赢得下一场战争。它为培训领导者提供了一个环境,让他们了解如何在时间受限的数字化环境中可视化战场并做出战术决策。挑战在于以最具成本效益的方式创建这种环境,以驱动参谋人员的感觉,使他们完全沉浸在正在进行的战斗中,让幻想变成现实。本文将描述此环境,重点介绍高级架构的使用及其在促进多个软件应用程序快速联合方面的重要性。本文的背景是本财年正在进行的 TRADOC 陆军转型计划,旨在开发临时旅战斗队 (IBCT) 高级领导人培训课程。。
位移速率为 ~2 x 10"^ dpa s"',而 ANL 数据为 525 和 600 C (997 和 1112 F) 下 4-MeV 辐射,位移速率为 5 x 10"^ dpa/s^'。在近似值上,相应数据之间的 25 C (45 F) 温差由通量差补偿,因此我们得出结论,这两项研究的膨胀数据之间具有极好的一致性。结果表明,所用的离子模拟技术与离子能量无关。特别是,这两组数据都没有表现出饱和效应,如 Hudson 等人 [13] 先前报道的 316 型不锈钢在 525 C (997 F) 下用 22-MeV C** 离子辐照的饱和效应。他们的数据如图 1 中的实线所示。在 ~600C (1112F) 的结果中, GE 数据中膨胀的绝对量级大于 ANL 数据中的膨胀量级,但剂量依赖性相似。高温下膨胀的明显差异源于对箔体积的 AF 校正,即 = AF/(F-AI^,仅用于报告 GE 数据。
摘要。已提出合作虚拟电厂生态系统(CVPP-E)和认知家庭数字双胞胎(CHDT)的概念,为可再生能源社区(REC)中家庭的有效组织和管理做出了贡献。这两个想法都可以由数字双胞胎表示,彼此相互补充。CHDT可以建模为软件代理,旨在具有某些认知能力,可以使他们根据其所有者的偏好或价值系统做出自主决策。由于其认知和决策能力,这些代理人可能会表现出一些行为属性,例如参与协作,相互影响彼此以及采用某种形式的社会创新能力。这些行为属性有望促进合作,这些属性被设想为提高CVPP -E的生存能力和可持续性。因此,本研究试图证明CHDT可以相互影响彼此朝着共同目标相互影响的能力 - 从而促进可持续的能源消耗。我们采用了一种多方法仿真技术,该技术涉及在单个仿真平台上集成多个模拟范式,例如系统动力学,基于代理的事件模拟技术。研究结果表明,相互影响可以增强生态系统中的可持续消费。
关于 Tower Semiconductor Tower Semiconductor Ltd. (NASDAQ: TSEM, TASE: TSEM) 是领先的高价值模拟半导体解决方案代工厂,为消费、工业、汽车、移动、基础设施、医疗、航空航天和国防等不断增长的市场提供集成电路 (IC) 技术和制造平台。Tower Semiconductor 致力于通过长期合作伙伴关系及其先进创新的模拟技术产品对世界产生积极和可持续的影响,包括广泛的可定制工艺平台,如 SiGe、BiCMOS、混合信号 CMOS、RF CMOS、CMOS 图像传感器、非成像传感器、集成电源管理(BCD 和 700V)和 MEMS。Tower Semiconductor 还为 IDM 和无晶圆厂公司提供世界一流的设计支持,以实现快速准确的设计周期以及包括开发、转移和优化在内的工艺转移服务。为了向客户提供多晶圆厂采购和扩展产能,Tower Semiconductor 在以色列设有两家制造工厂(150 毫米和 200 毫米),在意大利设有一家制造工厂(300 毫米),
目录 执行摘要 v 1. 背景 1 目的 概述 第一部分 主要目标:可负担性和资源成本 2. 替代方案的经济优势:改造电力系统的机遇 技术革命和中期成本 关键成本趋势 短期成本 3. 隐形燃料:能源效率 16 潜在贡献:数量和成本 潜在恒定数量和成本:技术与经济进步 家电效率标准 第二部分其他主要政策目标:就业增长和脱碳 4. 经济影响、就业和增长 27 新技术如何创造就业和增长 为什么补贴老化的反应堆会扼杀就业和经济增长 伊利诺伊州 纽约州 结论 5. 脱碳 38 碳减排的价值 老化反应堆的成本 是否有足够的资源来满足脱碳过程中的需要?第三部分 确保成功转型 6. 运营可靠的能源系统 50 实现低成本、可靠电力的工具 模拟技术变革的复杂影响