摘要/总结 摘要:本硕士论文旨在开发一种优化空客飞机水平稳定器几何形状的方法。飞行认证对稳定性和控制提出了一系列要求,任何飞机都必须遵守这些要求。稳定器的梯形平面形状和面积受到这些要求的限制,因为它们对飞机的操纵品质有着至关重要的影响。优化包括找到设计空间中最好的稳定器,使飞机能够通过认证。为了在不实际驾驶飞机的情况下进行这种优化,我们使用了空客工具 E‐Motion,它可以模拟操纵质量标准,输出测试稳定器的可行性。最小化的目标函数是稳定器的重量和阻力的组合。使用空中客车初步设计工具 EP-EH 来评估此目标。该方法的实施是通过模拟工具 I-Sight 进行的,该工具为工程师提供了一组可根据需要选择的采样、近似和优化方法。本报告介绍了该方法在空中客车 A380 特定情况下的构造和结果。A380 的 HTP 理论上可实现的重量和阻力减少分别为 115Kg(1.9%)和 0.58 阻力数(8.4%)。摘要:本项目最后介绍了空中客车飞机水平安装几何优化方法的开发过程。Ensayos en vuelo imponen un conjunto de requerimientos sobre la estabilidad y el control que los aviones tienen que cumplir.梯形植物形状和稳定位置需要根据需要进行限制,否则会影响到 los aviones 的热量。优化了巴士的最佳设置空间,以允许航空认证。实现航空领域的实际优化,利用空客、E-Motion、风量计算标准、以及稳定概率的事实。将目标最小化功能与比索和航空抵抗力结合起来。Otra herramienta de Airbus,EP-EH esta utilizada para evaluar este criterio。纪念空客 A380 的构造和结果。该方法的实现是通过I-Sight仿真工具完成的,该工具为工程师提供了一套采样、近似和优化方法,工程师可以根据需要进行选择。理论上实现的重量和阻力降低分别为 115 公斤 (1.9%) 和 0.58 阻力数 (8.4%)。
摘要/总结 摘要:本硕士论文旨在开发一种优化空客飞机水平稳定器几何形状的方法。飞行认证对稳定性和控制提出了一系列要求,任何飞机都必须遵守这些要求。稳定器的梯形平面形状和面积受到这些要求的限制,因为它们对飞机的操纵品质有着至关重要的影响。优化包括找到设计空间中最好的稳定器,使飞机能够通过认证。为了在不实际驾驶飞机的情况下进行这种优化,我们使用了空客工具 E‐Motion,它可以模拟操纵质量标准,输出测试稳定器的可行性。最小化的目标函数是稳定器的重量和阻力的组合。使用空中客车初步设计工具 EP-EH 来评估此目标。该方法的实施是通过模拟工具 I-Sight 进行的,该工具为工程师提供了一组可根据需要选择的采样、近似和优化方法。本报告介绍了该方法在空中客车 A380 特定情况下的构造和结果。A380 的 HTP 理论上可实现的重量和阻力减少分别为 115Kg(1.9%)和 0.58 阻力数(8.4%)。摘要:本项目最后介绍了空中客车飞机水平安装几何优化方法的开发过程。Ensayos en vuelo imponen un conjunto de requerimientos sobre la estabilidad y el control que los aviones tienen que cumplir.梯形植物形状和稳定位置需要根据需要进行限制,否则会影响到 los aviones 的热量。优化了巴士的最佳设置空间,以允许航空认证。实现航空领域的实际优化,利用空客、E-Motion、风量计算标准、以及稳定概率的事实。将目标最小化功能与比索和航空抵抗力结合起来。Otra herramienta de Airbus,EP-EH esta utilizada para evaluar este criterio。纪念空客 A380 的构造和结果。该方法的实现是通过I-Sight仿真工具完成的,该工具为工程师提供了一套采样、近似和优化方法,工程师可以根据需要进行选择。理论上实现的重量和阻力减少量分别为115Kg(1.9%)和0.58阻力数(8.4%)。