在线学习环境中为学生为学生提供的抽象提取技能信息一直是跨不同领域的一个具有挑战性的话题。预测技能的数量是估计学生技能的第一步。在本文中,我们提出了基于机器学习(ML)模型的预测方法,在该方法中,我们使用分析模型来生成反映目标场景的数据特征的模拟数据,并从模拟数据中获取了训练和测试ML模型的功能。我们在简单而复杂的结构中与多维项目响应理论(MIRT)同时说明了这种方法,并进一步将受过训练的ML模型与基于测试数据的统计方法选择。我们的初步结果表明,与统计方法相比,ML模型通常达到这两种结构的正确估计比例明显更高。此外,我们发现缺失值和样本量的百分比增加会导致对方法的性能的负面影响和积极影响。使用来自分析模型的仿真数据来训练ML模型并进行预测可以扩展技能提取的当前操作,这为从业者提供了额外的选择。
摘要由于典型的长尾数据分布问题,模拟无域间隙合成数据对于机器人技术,摄影测量和计算机视觉研究至关重要。基本挑战涉及可靠地衡量真实数据和所谓数据之间的差异。这样的措施对于安全至关重要的应用(例如自动驾驶)至关重要,在这种应用中,在此驾驶中可能会影响汽车的感知并造成致命事故。以前的工作通常是为了在一个场景上模拟数据并在不同的现实世界中分析性能,阻碍了来自网络缺陷,类别定义和对象代表的域差距的不相交分析。在本文中,我们提出了一种新的方法,用于测量现实世界传感器观测值和代表相同位置的模拟数据之间的域间隙,从而实现了全面的域间隙分析。为了测量这种域间隙,我们引入了一种新型的公制狗PCL和评估模拟点云的几何和语义质量的评估。我们的实验证实了引入的
ORR,总体反应率PFS,无进展生存期;资料来源:来自注册ph2代码break 100&ph3代码折断200的Sotorasib数据在2022 EMSO会议上提出的结果; Adagrasib来自Krystal-1结果的数据在2022年ASCO会议上介绍; GDC-6036 2022 WCLC会议的数据;从产品标签中获取的模拟数据
人工智能(AI)在数据驱动的状态监测研究中不断升级。传统的基于专家知识的预测和健康管理(PHM)过程可以借助各种AI技术(例如深度学习模型)变得更加智能。另一方面,当前基于深度学习的预测存在数据缺失问题,尤其是考虑到实际工业应用中组件的不同操作条件和退化模式。随着仿真技术的发展,基于物理知识的数字孪生模型使工程师能够以较低的成本访问大量仿真数据。这些模拟数据包含组件的物理特性和退化信息。为了准确预测退化过程中的剩余使用寿命(RUL),本文基于现象学振动模型构建了轴承数字孪生模型。使用领域对抗神经网络 (DANN) 来实现模拟和真实数据之间的领域自适应目标。将模拟数据视为源域,将真实数据视为目标域,DANN 模型能够在没有任何标记信息先验知识的情况下预测 RUL。基于实际轴承运行至故障实验的验证结果,与最先进的方法相比,所提出的方法能够获得最小的 RUL 预测误差。
是一种在基因组学领域中广泛使用的技术。但是,目前缺乏从纳米孔测序设备创建模拟数据的有效工具,这些工具以时间序列的当前信号数据的形式测量DNA或RNA分子。在这里,我们介绍了Squigulator,这是一个快速而简单的工具,用于模拟逼真的纳米孔信号数据。s弹器采用参考基因组,转录组或读取序列,并生成相应的原始纳米孔信号数据。这与牛津纳米孔技术(ONT)和其他第三方工具的基本软件兼容,从而为纳米孔分析工作流的每个阶段提供了有用的基板,用于开发,测试,调试,验证和优化。用户可以使用模拟特定ONT协议或无噪声“理想”数据的预设参数生成数据,或者他们可以确定性地修改一系列实验变量和/或噪声参数以满足其需求。我们提供了一个简短的用途示例,创建了模拟数据,以模拟不同参数影响ONT基本和下游变体检测准确性的程度。此分析揭示了对ONT数据和基本算法的性质的新见解。我们为纳米孔社区提供了旋转器作为开源工具。
对耦合和因果关系的时间和频域度量的评估依赖于线性多元过程的参数表示。时间序列之间时间依赖性的研究基于矢量自回旋模型的识别。通过通过普通最小二乘(OLS)估计器解决的回归问题的定义来实现此过程。但是,其准确性受到数据点不足的强烈影响,并且并不能保证稳定的解决方案。要克服这个问题,可以使用受惩罚的回归技术。这项工作的目的是将OLS的行为与不同实验条件下连通性分析的不同惩罚回归方法进行比较。偏见,用于此目的的网络结构重建和计算时间的重建精度。通过模拟数据在不同量的可用数据示例中实现不同的地面真实网络的模拟数据测试了不同的惩罚回归。然后,将方法应用于从执行运动成像任务的健康志愿者中记录的真实脑电图信号(EEG)。惩罚的回归优于仿真设置中的OLS。实际脑电图数据上的应用程序显示了如何使用从大脑网络中提取的功能,即使在数据匮乏的条件下,也可以在两个任务之间进行分解。惩罚回归技术可用于大脑连通性估计,并且可以根据线性假设克服经典OLS施加的局限性来计算所有连接性估计器。
已经创建了溢出机学习机翼性能(PALMO)数据库,以实现各种应用程序中的机翼性能的强大建模。数据库使用溢出仿真数据二阶精确,并在Spalart-Allmaras湍流闭合时在空间上精确精确。开发棕榈数据库的基础是翼型基座立方体。每个基本立方体都包含在一系列的MACH数字,雷诺数和攻击角度的范围内参数化的模拟数据。数据库的第一个版本包括NACA 4系机翼,在机翼厚度中具有参数化,从NACA 0006到NACA 4424。总共在NASA高端计算能力(HECC)超级计算机上运行了52,480个NACA 4系列计算,并且将相应的机翼性能系数嵌入本文档的附录中,以进行公共分布。这提供了涵盖广泛的航空航天设计应用程序的高级精确模拟数据,该应用使用户能够开发溢出质量的机翼性能查找表,而无需其他高性能计算。除了对航空航天车的工程设计和分析外,Palmo非常适合作为航空航天工程中机器学习方法开发和测试的基准数据集。下游替代模型可实现溢出质量的机翼性能预测,以预测数据库范围内的室内,厚度,马赫数,雷诺数和攻击角度的任何任意组合。
摘要 - 由于缺乏可用的高分辨率雷达数据集,并且在获取现实世界中的数据方面缺乏可用的高分辨率雷达数据集和巨大的困难,因此摘要模拟已成为雷达算法开发和测试的重要工具。但是,由于现有的雷达仿真工具不容易易于访问,需要详细的网格输入并花费小时才能模拟,模拟雷达数据很具有挑战性。 为了解决这些问题,我们提出了Shenron,这是一个开源框架,它有效地仅使用LIDAR点云和相机图像来模拟高档MIMO雷达数据。 我们表明,使用Shenron,可以生成模拟数据,这些数据可用于与实际数据一样有效地评估算法。 此外,人们可以通过雷达的庞大参数空间进行快速迭代,以找到任何应用程序的最佳参数集,并在雷达感知和传感器融合方面具有很大的帮助研究。模拟雷达数据很具有挑战性。为了解决这些问题,我们提出了Shenron,这是一个开源框架,它有效地仅使用LIDAR点云和相机图像来模拟高档MIMO雷达数据。我们表明,使用Shenron,可以生成模拟数据,这些数据可用于与实际数据一样有效地评估算法。此外,人们可以通过雷达的庞大参数空间进行快速迭代,以找到任何应用程序的最佳参数集,并在雷达感知和传感器融合方面具有很大的帮助研究。
摘要 — 使用精确时间事件监控变电站及其互连拓扑对于现代复杂电力系统网络至关重要。电力系统故障从简单到复杂,需要提供适当的时间同步数字事件和模拟数据,例如电压、电流和频率。电力系统分析师、资产管理团队和工程师必须全面了解电力动态、高分辨率瞬态故障记录和比瞬态故障持续时间更长的低分辨率动态扰动记录,以及相应的顺序事件记录,以评估孤立和互连电力系统故障,准确找到故障源,并采取预防措施避免这些故障再次发生。
摘要 — 使用精确时间事件监控变电站及其互连拓扑对于现代复杂电力系统网络至关重要。电力系统故障从简单到复杂,需要提供适当的时间同步数字事件和模拟数据,例如电压、电流和频率。电力系统分析师、资产管理团队和工程师必须全面了解电力动态、高分辨率瞬态故障记录和比瞬态故障持续时间更长的低分辨率动态扰动记录,以及相应的顺序事件记录,以评估孤立和互连电力系统故障,准确找到故障源,并采取预防措施避免这些故障再次发生。