数字 ZoDIAC 探测器在住宅和商业环境中提供更高的精度、可靠性和卓越的误报免疫力。先进的电路设计使用先进的微处理器对 PIR 传感器信号进行直接的模拟到数字转换。真正的数字运动检测在数字域中转换、放大和分析传感器信号,消除了模拟电路引起的饱和、数据丢失和噪音等问题。基于 Rokonet 的先进技术,ZoDIAC 系列提供了全套探测器解决方案。由于其外壳相同、紧凑且美观,ZoDIAC 探测器的各种技术可以在一个安装中组合使用,同时保持相同的整体外观。ZoDIAC 系列产品易于安装,并且由于可以自由旋转以实现最佳的墙壁/天花板安装,因此具有完全的多功能性。
课程目的:本课程是电气工程中电子和混合信号电路设计重点的领域衔接课程。它是 EEE 334,电路 II 的延续。在 EEE 334 中,您将了解晶体管和电子电路的基础知识。本课程将是您的第一门真正的电子电路设计课程,重点介绍如何构建数字和模拟电路。实际设计将在配套实验室中实现,您将需要使用 CADENCE EDA 工具构建和模拟特定电路,从 CMOS 逻辑门到差分放大器。本课程最重要的特点可能是它对电子电路的时间和频域响应的处理。鉴于这一特点,强烈建议学生不仅复习他们在 EEE334 中学到的知识,还要复习 EEE 202,电路 I 中涵盖的网络分析原理。
2024 年 11 月 30 日,来自 Kotha Bhour 政府中学的 17 名学生参观了 Jammu Cantt 陆军公立学校的 Atal Tinkering Lab。课程首先介绍了电路的基本知识,解释了基本组件及其功能。然后,学生们在 Tinkercad 上设计了简单的电路,熟悉了虚拟电路的创建。在此基础上,通过动手活动介绍了串联和并联电路的概念,学生通过实际站在串联和并联电路中来模拟电路。他们通过在 Tinkercad 上设计虚拟串联和并联电路进一步加深了理解。在实际应用中,学生们在指导下使用电池、电线和 LED 组装了串联电路。他们还学习了如何使用万用表测量电池电压和测试 LED,从而提高了他们的故障排除技能。课程结束时,学生们享用了茶点,在加强他们对电子基础知识的了解的同时,受到了启发和参与。
摘要:本文介绍了一种基于二阶 delta-sigma 调制器的紧凑型低功耗 CMOS 生物电信号读出电路。该转换器使用电压控制的基于振荡器的量化器,通过单个无运算放大器的积分器和最少的模拟电路实现二阶噪声整形。已经使用 0.18 µ m CMOS 技术实现了原型,其中包括相同调制器拓扑的两种不同变体。主调制器已针对 300 Hz–6 kHz 频段的低噪声神经动作电位检测进行了优化,输入参考噪声为 5.0 µ V rms ,占地面积为 0.0045 mm 2 。另一种配置具有更大的输入级以降低低频噪声,在 1 Hz–10 kHz 频段实现 8.7 µ V rms ,占地面积为 0.006 mm 2 。调制器电压为 1.8 V,预计功耗为 3.5 µ W。
快速灵活的采购:精确的空间光伏特性分析,实现先进技术融合。太阳能电池和太阳能电池阵列是航天器最脆弱和最昂贵的子系统之一。随着采购周期缩短和威胁愈发动态,航空航天正在采用由最先进的太阳能电池特性分析和原型设计支持的敏捷任务保障流程来应对。我们的空间光伏专业知识对于航空航天测量单元的开发至关重要,该单元将高精度零漂移模拟电路与低功耗数字电子设备相结合,可在传统测试装置的一小部分尺寸下进行实验室级的电流、电压、温度和太阳照射角度测量。客户可以在实验室中对先进太阳能电池技术的在轨性能进行特性分析,从而将先进技术更快地融入空间系统。
快速灵活的采购:精确的空间光伏特性分析,实现先进技术融合。太阳能电池和太阳能电池阵列是航天器最脆弱和最昂贵的子系统之一。随着采购周期缩短和威胁愈发动态,航空航天正在采用由最先进的太阳能电池特性分析和原型设计支持的敏捷任务保障流程来应对。我们的空间光伏专业知识对于航空航天测量单元的开发至关重要,该单元将高精度零漂移模拟电路与低功耗数字电子设备相结合,可在传统测试装置的一小部分尺寸下进行实验室级的电流、电压、温度和太阳照射角度测量。客户可以在实验室中对先进太阳能电池技术的在轨性能进行特性分析,从而将先进技术更快地融入空间系统。
摘要 — 近来提出了通过太赫兹频率的伪表面等离子体极化子 (SSPP) 超表面进行芯片间信息传播的概念,该概念有望实现高带宽、低串扰和低能耗的数据传输。由于超表面的奇异电磁特性源自其设计的几何图案和周期性,因此制造工艺参数的任何可能变化都可能影响设计图案,从而影响 SSPP 互连的信息容量。在这项工作中,我们研究了超表面几何图案统计变化对 SSPP 互连性能的影响程度。我们还描述了设计适当模拟电路的技术,以便可以实时恢复由工艺变化引起的信号完整性损失。索引术语 — 伪等离子体、互连、可变性、补偿技术
科学驱动的敏捷性:精确的空间光伏特性分析,助力先进技术融合。太阳能电池和太阳能电池阵列是航天器中最脆弱、成本最高的子系统之一。随着采购周期缩短和威胁变得更加动态,航空航天正在通过敏捷的任务保证流程做出响应,并由最先进的太阳能电池特性分析和原型设计提供支持。我们的空间光伏专业知识对于航空航天测量单元的开发至关重要,该单元将高精度零漂移模拟电路与低功耗数字电子设备相结合,可在传统测试装置的一小部分尺寸下进行实验室级电流、电压、温度和太阳照射角度测量。客户可以在实验室中表征先进太阳能电池技术的在轨性能,从而更快地将先进技术融入太空系统。
在本文中,我们提出了一种为中性原子量子处理器开发的噪声模型,并对模拟电路执行进行了基准测试。我们通过结合诊断测量和将模拟的位串概率与之前在计算机上运行的电路的测量值进行拟合来构建噪声模型。量子处理器在二维方格上使用中性原子量子比特,并使用激光和微波场实现门 [8]。由于 QED-C 基准测试中的某些电路需要的量子比特多于量子处理器中使用的量子比特,我们假设每个站点的误差都是均匀的,并扩展了模拟器以适应基准测试中提供的高宽度电路。我们运行了全对全和最近邻连接的模拟,以适应未来潜在的设备连接能力范围。我们发现与最近邻连接相比,全对全连接的电路保真度有显著提高。