如今,电感模拟是一个广泛的研究课题,因为集成电路中需要无电感网络,而模拟电感可以提供更稳定、更不敏感的网络实现,研究人员正在使用不同的有源构建块(ABB)CM 或 VM 来展示电感模拟电路,需要电感模拟设计是因为盘绕电感的尺寸和体积会消耗大量的功率和能量。有源电感设计为接地电感(GI)或浮动电感(FI),它们有损或无损,无损 GI/FI 是纯电感,可以与盘绕电感完全一样使用,而有损 GI/FI 是电感和电阻/电容的串联或并联组合。滤波器和振荡器等模拟信号处理电路采用 GI 或 FI 设计,这些电感可以用有源模拟电感代替,与盘绕电感相比工作效率更高。因此,使用带有任何有源器件的 RC 网络模拟电感器已成为实现集成电路 (IC) 形式的基于电感器的电路的替代选择。
由于浮点运算需要大量资源,使用传统计算范式在贝叶斯网络中实现推理(即计算后验概率)在能源、时间和空间方面效率低下。脱离传统计算系统以利用贝叶斯推理的高并行性最近引起了人们的关注,特别是在贝叶斯网络的硬件实现方面。这些努力通过利用新兴的非易失性设备,促成了从数字电路、混合信号电路到模拟电路的多种实现。已经提出了几种使用贝叶斯随机变量的随机计算架构,从类似 FPGA 的架构到交叉开关阵列等受大脑启发的架构。这篇全面的评论论文讨论了考虑不同设备、电路和架构的贝叶斯网络的不同硬件实现,以及解决现有硬件实现问题的更具未来性的概述。
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .
• 凭借业界首款集成到 MCU 中的斩波稳定运算放大器,现在可以通过将模拟信号链引入 MCU 来简化设计,而不会影响性能 • MSPM0 斩波稳定运算放大器在 -40 至 125ºC 工作范围内提供 <±0.5 mV 的输入失调漂移,显著降低高增益应用中的测量误差;借助灵活的片上模拟互连,可以创建各种模拟电路,包括反相/非反相放大器、缓冲器、PGA(增益从 1X 到 32X)以及差分或级联放大器拓扑 • MSPM0G MCU 系列提供双路、同时采样 4 Msps 12 位 SAR ADC,具有内部硬件平均值,可实现 14 位 250 ksps 采样,适用于需要更高精度监控电压和电流的应用,通常无需使用分立 ADC
摘要 — 在本文中,我们建议使用模拟电路实现 S 型函数,该函数将用作多层感知器 (MLP) 网络神经元的激活函数,以及其近似导数。文献中已经提出了几种实现方法,特别是 Lu 等人 (2000) 的实现方法,他们提供了采用 1.2 µ m 技术实现的可配置简单电路。在本文中,我们展示了基于 Lu 等人的 S 型函数电路设计,使用 65 nm 技术以降低能耗和电路面积。该设计基于对电路的深入理论分析,并通过电路级模拟进行验证。本文的主要贡献是修改电路的拓扑结构以满足电路所需的非线性响应以及提取所得电路的直流功耗。索引词——激活函数、模拟 CMOS 电路、近似导数、反向传播、多层感知器、S 型函数。
摘要 本文介绍了使用 SKY130 开源 PDK 设计自时钟 12 位非二进制全差分 SAR-ADC。整个混合信号电路设计和布局均采用免费开源软件创建。ADC 在 1.8V 电源下达到高达 1.44MS/s 的采样率,同时在 0.175mm 2 的小面积上消耗 703 μW 的功率。可配置抽取滤波器可以在使用 256 的过采样因子时将 ADC 分辨率提高到 16 位。使用 448aF 华夫饼电容器的 9 位温度计编码和 3 位二进制编码 DAC 矩阵导致每个输入的总电容为 1.83pF。使用 SKY130 高密度标准单元的形式来实现可配置的模拟功能,允许使用硬件描述语言对模拟电路进行参数化,并在有意数字化的工作流程中强化宏。
解决这些挑战要求从算法,实施和设计角度进行共同努力。首先,对高效Genai部署的算法优化至关重要。研究人员正在积极探索降低复杂性技术,以简化生成模型,而不会显着损害其性能。尽管最近的算法研究在修剪和量化方面取得了进展,但这种尺寸缩小的Genai模型仍然是资源密集的。因此,迫切需要使用硬件感知的Genai算法,同时保持出色的性能。迫切需要第二次,有效的电路和系统。为Genai的创新硬件和体系结构不断提出,旨在在可扩展性,灵活性和效率之间取得平衡。行业中的公司正在取得长足的进步,但是持续需要Genai的专业Genai加速器和节能计算范式。第三,用于加速电路和系统设计的Genai非常需要和有希望。genai还具有增强电子设计自动化工具,模拟电路,优化模拟并加速验证的潜力。但是,在确保可靠性,效率和信任方面仍然存在挑战。
我们利用变分量子本征值求解器 (VQE) 探索了存在拓扑 θ 项的格子 Schwinger 模型中的一阶相变。使用两种不同的费米子离散化,即 Wilson 和交错费米子,我们开发了适用于这两种离散化的参数化模拟电路,并通过在没有噪声的情况下模拟经典的理想 VQE 优化来比较它们的性能。然后在 IBM 的超导量子硬件上准备通过经典模拟获得的状态。应用最先进的误差缓解方法,我们表明可以从量子硬件可靠地获得电场密度和粒子数,这些可观测量揭示了模型的相结构。为了研究连续外推所需的最小系统尺寸,我们使用矩阵乘积状态研究连续极限,并将我们的结果与连续质量微扰理论进行比较。我们证明,考虑附加质量重正化对于提高较小系统尺寸所能获得的精度至关重要。此外,对于我们研究的可观测量,我们观察到了普适性,并且两种费米子离散化都产生了相同的连续极限。
解决这些挑战要求从算法,实施和设计角度进行共同努力。首先,对高效Genai部署的算法优化至关重要。研究人员正在积极探索降低复杂性技术,以简化生成模型,而不会显着损害其性能。尽管最近的算法研究在修剪和量化方面取得了进展,但这种尺寸缩小的Genai模型仍然是资源密集的。因此,迫切需要使用硬件感知的Genai算法,同时保持出色的性能。迫切需要第二次,有效的电路和系统。为Genai的创新硬件和体系结构不断提出,旨在在可扩展性,灵活性和效率之间取得平衡。行业中的公司正在取得长足的进步,但是持续需要Genai的专业Genai加速器和节能计算范式。第三,用于加速电路和系统设计的Genai非常需要和有希望。genai还具有增强电子设计自动化(EDA)工具,模拟电路,优化模拟并加速验证的潜力。但是,在确保可靠性,效率和信任方面仍然存在挑战。
一般改进《数字系统》第十版反映了作者对现代数字电子学发展方向的看法。在当今的工业界,我们看到了将产品快速推向市场的重要性。使用现代设计工具、CPLD 和 FPGA 可让工程师快速从概念发展到功能硅片。微控制器已经接管了许多曾经由数字电路实现的应用程序,DSP 也已用于取代许多模拟电路。令人惊奇的是,现在可以使用具有高级开发工具的硬件描述语言将微控制器、DSP 和所有必要的胶合逻辑整合到单个 FPGA 上。当今的学生必须接触这些现代工具,即使是在入门课程中。每位教育工作者都有责任找到最佳方法,让毕业生为职业生涯中将遇到的工作做好准备。近 40 年来,标准 SSI 和 MSI 部件一直是数字系统构建的“砖瓦”,现在已接近过时。这段时间所教授的许多技术都侧重于优化由这些过时设备构建的电路。必须从