美国陆军航空发展局已经开发了两种先进高速旋翼机配置的通用高保真飞行动力学模型——一种是带有推进式螺旋桨的升力偏置同轴直升机,另一种是倾转旋翼机。开发这些模型的目的是为政府提供独立的控制系统设计、操纵品质分析和模拟研究能力,以支持未来垂直升力计划。使用多目标优化方法为这两种配置设计了全飞行包线显式模型跟随控制系统,以满足一系列稳定性、操纵品质和性能要求。在美国宇航局艾姆斯垂直运动模拟器的载人模拟实验中,使用一系列高速操纵品质演示机动对这两种飞机的控制律进行了评估。本文讨论了控制律和载人操纵品质评估的结果。模拟实验的结果显示,两种飞机的总体分配操纵品质均为 1 级。
单细胞转录组学可以研究细胞异质性,但是当前的无监督策略使将单个细胞与样品条件相关联的挑战。我们提出了SCMILD,这是一个基于多个实例学习的弱监督学习框架,该框架利用样本级标签来识别与条件相关的细胞亚群。SCMILD采用双分支结构来同时执行样本级分类和细胞级表示。,我们使用与CRISPR扰动细胞的对照模拟研究验证了该模型对条件相关细胞的可靠鉴定。对包括狼疮,COVID-19和溃疡性结肠炎在内的各种单细胞RNA-seq数据集进行了评估,SCMILD始终超过了最先进的模型,并确定了与原始研究的发现一致的条件特异性细胞亚群。这证明了SCMILD探索各种生物学条件及其在不同疾病环境中的适用性的细胞异质性的潜力。
KRAS基因G12突变与多种癌症有关。采用多重复制高斯加速分子动力学(MR-GaMD)模拟研究了G12C、G12D和G12R突变引起的开关结构域构象变化。自由能图表明,与GTP结合的WT KRAS相比,G12C、G12D和G12R诱导的能量状态更高,使开关结构域的构象更加无序,从而干扰KRAS与效应分子的结合。基于MR-GaMD轨迹的动力学分析表明,G12C、G12D和G12R不仅改变了开关结构域的灵活性,而且影响了其运动行为,这表明这三个突变可用于调控KRAS的活性。相互作用网络分析验证了GTP与开关S Ⅰ相互作用的不稳定性在开关结构域的高度无序状态中起着重要作用。此项工作有望为深入了解KRAS的功能提供有用的信息。
高渗透可再生能源固有的间歇性对微电网能源管理提出了经济性和可靠性问题。本研究提出了一种用于高可再生多能源微电网 (MEM) 的两层预测能源管理系统 (PEMS)。在该 MEM 中,地热、太阳能和风能被转换和调节为电力、热能和天然气供应,其中基于电解热电化学效应充分利用了多能源互补性。由于可再生能源 (RES) 的能量耦合越来越紧密,且存在不确定性,因此提出的微电网多能源管理是一个复杂而繁琐的问题。因此,这个棘手的问题可以通过具有不同时间尺度的两层 PEMS 来处理,其中上层最小化系统运行成本,下层应对可再生能源波动。对高可再生 MEM 进行了模拟研究,以表明其有效性和优于单一时间尺度方案。模拟结果表明,采用高可再生能源适应性可降低 22.2% 的运营成本。
提高可再生能源系统效率的研究日益引起了人们对高功率密度 (HPD) 储能单元的兴趣。HPD 单元与高能量密度 (HED) 储能系统一起使用时,可形成混合储能系统 (HESS)。超级电容器是 HPD 中最常用的储能单元,具有成本低、自放电率低和使用寿命长等特点。当系统需要高功率时,超级电容器用于支持 HED 单元,以确保传输功率的稳定性、效率和高质量。在 HESS 中以精确的时间使用超级电容器对其性能有重大影响。因此,必须正确建模超级电容器并将其与系统很好地集成。在本研究中,利用从模拟研究中获得的数据进行参数估计,并对超级电容器进行建模。对超级电容器模型进行了不同电流下的充电和放电测试,并获得了成功的结果。
当电中性相限制在纳米通道内流动时,由表面属性控制的电双层 (EDL) 中的电荷分布将屏蔽共离子,因此多余离子的迁移会导致纳米通道两端之间的电流或电压差异。人们做出了一些努力来优化纳米流体通道的几何形状和表面化学,以操纵分子或离子的传输行为。12 – 15 由于各种分子力引入了复杂的流体行为,较低的效率限制了稀电解质中废热的利用。8,9 从受限结构中的废热中回收机械能或电能的潜在机制已经得到了广泛的研究。16 – 18 Li 等人。通过分子动力学模拟研究了纳米通道中温度梯度驱动的流体输送机制,发现流体壁结合能对流动方向起着关键作用。19
全球范围内抑郁症发病率逐年上升,同时使用替代药物治疗的人数呈上升趋势,这要求我们制定可靠的草药安全档案。将草药与处方药结合使用时,会产生相当大的不良反应风险。大约 25% 的药物(包括许多抗抑郁药)的代谢和相应疗效都依赖于 CYP2D6 的活性。因此,探究草药中活性物质在野生型酶和临床相关等位基因变体中对 CYP2D6 的抑制作用对于避免毒性问题至关重要。在这项计算机模拟研究中,我们利用分子对接分析了几种被认为具有抗抑郁活性的草药化合物的 CYP2D6 野生型和 CYP2D6*53 抑制潜力。此外,还评估了几种药代动力学特性,以评估它们穿过血脑屏障的概率,并随后达到足够的脑生物利用度以调节中枢神经系统目标,以及可能暗示潜在安全问题的特征。
摘要 我们通过全原子分子动力学 (MD) 模拟研究了阳离子和不带电表面活性剂分子及其胶束在金属-水界面上的吸附行为。我们的模拟表明,未聚集的表面活性剂分子在金属表面强烈吸附,没有任何自由能垒。胶束的吸附行为则截然不同。阳离子表面活性剂的胶束在吸附时会经历一个长距离自由能垒,这是因为这些胶束周围存在反离子和水合水的环,当胶束接近表面时,这些环会受到干扰。不带电表面活性剂的胶束周围没有反离子的环,因此表现出无障碍的吸附自由能曲线。阳离子和不带电表面活性剂的胶束都会通过在金属表面解体而强烈吸附。在崩解状态下,组成胶束的分子重新排列,以实现分子轴与表面平行的平躺配置或分子轴与表面垂直的直立配置。
热量储能系统对于提高太阳能热应用效率(STEA)是必要的,并消除了能源供应和能源需求之间的不平衡。在热量储能设备中,潜在的热储存装置(LHTE)由于其在几乎恒定的温度下的质量 /体积的高能量密度而受到了很多关注。尽管近年来已经进行了广泛的研究,但对PCM热交换器设计的综合研究很少见。本文介绍了对热存储单元中热传导主导的相变过程的数值和模拟研究。作为传热流体(HTF)流过管,以充电和排放循环和石蜡作为相变材料(PCM)流动。使用先前的假设,我们使用ANSYS软件设计并执行了热量存储系统的模拟。对各种半径还进行了深入的恒定研究。在模拟和分析后,我们得出的结论是,如果夸大管半径,传热空间也随着时间的降低,可以减少充电和排放储存在PCM中的能量。
阿尔茨海默病是一种无法治愈的脑部疾病。由 40 个残基和 42 个残基的肽组成的原纤维被称为淀粉样蛋白-β (A β),它在脑中积累非常缓慢,这是一个多阶段的过程,通常需要几十年的时间。尽管阿尔茨海默病在 100 多年前首次被诊断出来,但毒性物质及其形成和神经元损伤机制仍然难以捉摸。例如,病理严重程度似乎与从阿尔茨海默病患者死后脑组织中纯化的原纤维数量无关。在这里,我建议抗阿尔茨海默病药物的开发应该考虑到原纤维形成的动力学控制,这是在淀粉样蛋白聚集的计算机模拟中首次观察到的。最近的低温电子显微镜 (cryo-EM) 研究表明,阿尔茨海默病患者的 A β 淀粉样蛋白纤维呈右旋和多态性。1 多态性源于缠绕的原丝数量的变化,而单个原丝具有相同的结构。在最近的低温电子显微镜研究 1 中观察到的右旋扭曲和可变数量的原丝与十年前通过粗粒度模型的淀粉样蛋白自组装分子动力学模拟所预测的纤维形态非常相似(参见参考文献 2 的图 2)。模拟研究表明,在低聚集倾向条件下,最常见的纤维形态不一定是最稳定的,这本质上是一种动力学而非热力学控制。更详细地说,模拟结果提供了证据,表明特定的中间体竞争快速生长,并且给定形态的数量更多地取决于先前形态合适的中间体的生成速率,而不是最终聚集体的相对自由能(图 1)。换句话说,淀粉样纤维的形成受到动力学控制,因为自组装途径中的自由能屏障和动力学陷阱(称为局部最小值)决定了聚集过程的结果。关于聚集的早期阶段,二聚体 A β 肽系统的首次原子模拟研究之一表明动力学捕获控制着二聚化和早期聚集体的形成。3 因此,计算机模拟