基于 FPGA 的安全相关 PRM 系统的资质认证 Tadashi Miyazaki、Naotaka Oda、Yasushi Goto、Toshifumi Hayashi 东芝公司,日本横滨 摘要。东芝开发了基于不可重写 (NRW) 现场可编程门阵列 (FPGA) 的安全相关仪器和控制 (I&C) 系统。考虑到应用于安全相关系统,东芝基于 FPGA 的系统采用了一旦制造后就无法更改的非易失性和不可重写的 FPGA。FPGA 是一种仅由基本逻辑电路组成的设备,FPGA 执行通过连接 FPGA 内部的基本逻辑电路配置的定义处理。基于 FPGA 的系统解决了由模拟电路操作的传统系统(基于模拟的系统)和由中央处理单元操作的系统(基于 CPU 的系统)中存在的问题。应用 FPGA 的优势在于可以保持产品的长寿命供应、提高可测试性 (验证) 并减少模拟系统中可能出现的漂移。东芝此次开发的系统是功率范围中子监测器 (PRM)。东芝计划今后将这种开发流程应用到其他安全相关系统(如 RPS),从而扩大基于 FPGA 的技术的应用范围。东芝为基于 NRW-FPGA 的安全相关 I&C 系统开发了一种特殊的设计流程。该设计流程解决了多年来关于核安全应用数字系统的可测试性问题。因此,东芝基于 NRW-FPGA 的安全相关 I&C 系统具有成为核安全应用数字系统标准的巨大优势。1. 引言核电站的 I&C 系统最初是基于模拟的。1980 和 90 年代开发了基于计算机的 I&C 系统。尤其是先进沸水反应堆 (ABWR) 中使用的系统,是世界上第一个沸水反应堆全数字化仪控系统。与老式模拟系统相比,计算机仪控系统具有许多优势。计算机仪控系统没有漂移问题,而漂移问题曾困扰过模拟系统的维护人员。计算机仪控系统具有许多先进功能,包括一些自动功能,这是任何模拟系统都无法提供的。计算机仪控系统的这些先进功能一直有助于核电站的安全运行。由于计算机仪控系统与安全相关,因此法规和标准要求它们进行验证和确认。然而,丰富的功能和由此产生的软件复杂性使得计算机仪控系统的验证和确认既耗时又昂贵。此外,计算机系统使用半导体工业生产的微处理器,与核工业相比,其产品生命周期较短。大多数微处理器可能在几年内就过时了。FPGA 于 1990 年在半导体行业中得到发展。与普通半导体器件或专用集成电路 (ASIC) 不同,FPGA 中的电路可以在从半导体工厂发货后确定或编程。因此,它适用于核工业等小批量应用。由于 FPGA 是一种半导体器件,其功能由嵌入在器件中的电路决定,因此 FPGA 无需操作系统 (OS) 或基于计算机的 I&C 系统所必需的复杂应用程序即可运行。一般而言,基于 FPGA 的 I&C 系统比基于计算机的 I&C 系统更简单,这使得 V&V 工作更简单且更经济实惠。
预测武器系统的性能很难用数学方程来估计,因为要考虑的变量很多。建模和仿真技术已经提出了可以评估武器系统开发和部署的最佳解决方案。模拟目的是设计模拟系统的决定性因素,但为每个目的开发一个模拟器成本高、不迅速、不灵活。分布式仿真系统通过将现有的模拟器与系统连接起来,允许以经济的输入资源进行大规模模拟,并且可以灵活、快速地重新设计系统以用于其他目的。本研究使用最初为军事模拟设计的 Delta3D 模拟游戏引擎在分布式系统中实现水下战争模拟,由于水下作战受环境情况影响最大,因此模拟系统交换环境数据。本研究采用 SEDRIS 处理环境数据,采用 HLA/RTI 处理分布式系统。
尽管数字传输已经可行多年,但早期对模拟系统传输声音的投资对于重大转变来说太大了,特别是在电话行业,电话线路是模拟的。随着晶体管的发明和微型计算机芯片的出现,这一切都在过去五十年中发生了变化。通过无线电频率和在通过模拟电话线连接的计算机之间传输数字化语音、视频和数据的需求导致了调制解调器(调制解调器)将数字信号转换为模拟信号,引入了光纤“电话线”(可以传输大量数字信号),大大提高了地面站点和卫星的无线电传输和重传能力。这些事件和其他技术创新使得在同一频率上同时传输许多数字信号成为可能,这引发了对更好、更快的方式的需求,即通过有线、无线电、光学和其他方式传输大量语音、图形、视频和数据。
模拟:● 模拟信号具有正弦或连续值。当今的模拟系统使用频率调制 (FM)。频率调制产生带有语音信号的连续波。通过将这种简单的系统集成到单个芯片中,这种收音机的成本已大大降低。模拟信号在当今的许多系统中广泛使用,但随着更可靠的数字信号的引入,模拟信号的使用正在减少。数字:● 数字信号用二进制数表示:1 或 0。1 和 0 值可以对应不同的离散电压值。任何不太适合该方案的信号都会被四舍五入。通过使用二进制信号,可以在每个传输的数据包中嵌入纠错信令和控制位。数据包包含一组位。该软件包含一种算法,可以理解语音和背景噪音之间的差异,并反过来消除
尽管数字传输已经可行多年,但早期对模拟系统传输声音的投资对于重大转变来说过于巨大,特别是在电话行业,电话线路是模拟的。随着晶体管的发明和微型计算机芯片的出现,这一切都在过去五十年中发生了变化。通过无线电频率以及在通过模拟电话线路连接的计算机之间传输数字化语音、视频和数据的需求导致了调制解调器(调制解调器)将数字信号转换为模拟信号、引入光纤“电话线”(可以传输大量数字信号)以及大大改善地面站点和卫星的无线电传输和重传能力。这些事件和其他技术创新使得在同一频率上同时传输许多数字信号成为可能,从而引发了对更好、更快的方式的需求,即通过有线、无线电、光学和其他方式传输大量语音、图形、视频和数据。
尽管数字传输已经可行多年,但早期对模拟系统传输声音的投资对于重大转变来说过于巨大,特别是在电话行业,电话线路是模拟的。随着晶体管的发明和微型计算机芯片的出现,这一切都在过去五十年中发生了变化。通过无线电频率以及在通过模拟电话线路连接的计算机之间传输数字化语音、视频和数据的需求导致了调制解调器(调制解调器)将数字信号转换为模拟信号、引入光纤“电话线”(可以传输大量数字信号)以及大大改善地面站点和卫星的无线电传输和重传能力。这些事件和其他技术创新使得在同一频率上同时传输许多数字信号成为可能,从而引发了对更好、更快的方式的需求,即通过有线、无线电、光学和其他方式传输大量语音、图形、视频和数据。