肺部手术后促进恢复的手术表明,数字引流系统比模拟系统具有多种优势 (4)。数字引流系统的优点如下:(I) 这些设备重量轻、结构紧凑,并且由于集成了抽吸泵,因此不需要连接到壁吸装置,这有利于患者转移。(II) 可以客观地量化和存储有关漏气的信息,并随时间推移进行存储,从而消除临床判断的变化。因此,关于胸管拔除的决策更加容易 (5)。避免外部吸入和使用数字引流系统均被证明具有低级别证据,但具有强烈的推荐级别。还应注意,与胸腔积液量相关的胸管拔除推荐标准是最多 450 mL/24 小时(证据级别:中等;推荐级别:强)。Thoraguard 手术引流系统(Centese,内布拉斯加州奥马哈)是一部新颖的
航空电子中的 MIL-STD-1553B:数据网络的发展方向和未来几十年来,航空电子架构的格局已从模拟系统实现转变为数字系统实现,软件复杂性也随之增加。随着飞机子系统的增长,它们之间的通信复杂性也随之增加。速度、可靠性、安全性、成本和服务质量都是选择特定数据网络标准时要考虑的因素。当前技术和数据网络的发展(其中 MIL-STD-1553B 一直是并且仍然是主要组成部分)为现代飞机提供了多种选择。但是,高清视频和摄像头服务对数据吞吐量的要求越来越高,远远超过了 MIL-STD-1553B 的理论最大值(大约 200 Mbps)。人们已经努力提供更快的 MIL-STD-1553B,这可能在商用飞机上仍能发挥某些作用。此外,以太网等技术更有可能成功满足商用和军用航空电子设备的最新吞吐量需求。
vlasiator是一种杂种 - vlasov空间等离子体模拟系统,设计用于对近地环境进行动力学模拟。1它的目标是使用它来执行地球磁层的全局三维模拟,以及与太阳风的相互作用,而没有固定的颗粒速度分布函数形状的固定处方[在mag-Netohyhyhydrodynarymists(MHD)中就是这种情况]。作为混合动力学方法的实现,Vlasiator通过在笛卡尔网格上传播相空间密度,将离子作为六个(三个空间和三个速度)维度的分布函数进行建模,从而模拟离子物种的相位进化。电子以间接方式处理,其有效的物理作用降低为电荷中和,霍尔的术语以及对欧姆定律的贡献。2在VLASITOR的数值实现中,故意选择相位空间的表示,而不是粒子中的粒子(PIC)近似的常见方法,3表示模拟在计算上非常重,通常超过几分钟的模拟物理时间的CPU小时数。另一方面,此选择可以实现
摘要:Callan–Giddings–Harvey–Strominger 黑洞的光谱和温度与平坦时空中的加速反射边界条件相对应。beta 系数与移动镜模型相同,其中加速度在实验室时间内呈指数增长。黑洞中心由完全反射的规律性条件建模,该条件使场模式发生红移,这是粒子产生的源头。除了计算能量通量外,我们还找到了与黑洞质量和引力模拟系统中的宇宙常数相关的相应移动镜参数。推广到任何镜像轨迹,我们推导出自力(洛伦兹-亚伯拉罕-狄拉克),一致地将其和拉莫尔功率与纠缠熵联系起来,从而引发了对信息流加速辐射的解释。将镜面自力和辐射功率施加到特定的CGHS黑洞模拟动镜上,揭示了渐近热平衡过程中视界信息的物理特性。
人体体外组织是嵌入生物材料(通常是水凝胶)的人体细胞体外 3D 培养物,可重现人体的异质、多尺度和结构环境。3D 组织和器官工程中使用的现代策略整合了自动化数字制造方法的使用,例如 3D 打印、生物打印和生物制造。人体组织和器官及其生理内和生理间的相互作用特别复杂。因此,人们越来越关注材料科学、医学和生物学与艺术和信息学的交叉。本报告介绍了生物墨水聚合的计算建模及其与生物打印的兼容性的进展、数字设计和制造在流体培养设备开发中的应用,以及生成算法在模拟体外组织的自然和生物增强中的应用。作为未来的发展方向,我们讨论了使用串联体外组织作为人体模拟系统及其在药物药代动力学和代谢、疾病建模和诊断中的应用。
摘要。随着后摩尔定律计算领域的出现,新的架构不断涌现。借助 IBM 的 TrueNorth 等复合、数百万连接的神经形态芯片,神经工程现在已成为这种新型计算范式中的可行技术。高能物理实验正在不断探索新的计算和数据处理方法,包括神经形态,以支持该领域日益增长的挑战并为未来的商品计算趋势做好准备。这项工作详细介绍了 IBM 的神经形态架构 TrueNorth 中用于并行和串行脉冲序列的卡尔曼滤波器实现的第一个实例。在多个模拟系统上测试了实现,并根据等效非脉冲卡尔曼滤波器评估了其性能。在改变权重和阈值寄存器的大小、用于编码状态的脉冲数量、用于空间编码的神经元块的大小以及神经元电位重置方案的同时,探索了实现的极限。
参考文献 [1] IPCC (2021)。气候变化广泛、迅速且加剧——IPCC。气候变化。 [2] Brandl, H.,2006。能源基础和其他热活性地面结构。岩土技术 56,81-122。 [3] Adam D. 和 Markiewicz R.,2009。来自地耦合结构、地基、隧道和下水道的能量。岩土技术 59,229-236。 [4] Barla M.、Insana A. (2023)。能源隧道为城市可持续发展提供机遇。隧道与地下空间技术 132 (2023) 104902 [5] Barla, M.、Di Donna, A. 和 Insana, A. (2019)。一种新型实尺度能量隧道实验原型。隧道和地下空间技术,87,1-14。[6] Insana,A.,&Barla,M.(2020年)。热活性隧道能量性能的实验和数值研究。可再生能源,152,781-792。[7] DHI(2022年)。Feflow 7.5——地下流动和输送过程的有限元模拟系统。DHI-WASY GmbH,柏林。
摘要:Callan -Giddings -Harvey -Strominger黑洞的频谱和温度对应于加速反射边界条件的时空。Beta系数与移动的镜像模型相同,该模型在实验室时间中的加速度为指数。黑洞的中心是由红移的正规条件完美反映了场的模式,这是粒子创造的来源。除了计算能量频道外,我们还发现了与黑洞质量相关的相应运动镜参数和重力模拟系统中的宇宙常数。概括到任何镜像轨迹,我们始终如一地得出了自我力量(Lorentz – Abraham – Dirac),一致地表达它,并且与纠缠熵相关的Larmor功率,邀请以信息流的方式解释加速辐射。镜子自力和辐射力应用于特定的CGHS黑洞模拟运动镜,该镜子在渐近方法中揭示了信息在热平衡的过程中的信息物理。
真空涨落转化为真实粒子最早是由 L. Parker 在考虑膨胀宇宙时预测的,随后 S. Hawking 在黑洞辐射研究中也做出了预测。由于他们的实验观察具有挑战性,模拟系统在验证这一概念方面引起了关注。在这里,我们提出了一个实验装置,它由两个相邻的压电半导体层组成,其中一个带有动态量子点 (DQD),另一个是 p 掺杂的,顶部有一个附加栅极,这引入了空间相关的层电导率。后一层上表面声波 (SAW) 的传播由具有有效度量的波动方程控制。在 DQD 的框架中,这个空间和时间相关的度量拥有 SAW 的声波视界,并且在某种程度上类似于二维非旋转和不带电黑洞的声波视界。DQD 自旋的非热稳态表示以压电声子的形式产生粒子。
本文使用一种生成性神经网络体系结构,该结构结合了无监督(生成)和受监督的(歧视性)模型,并使用模型比较策略来评估有关脑状态与行为之间映射的假设。认知神经科学出版物中的大多数建模都假设是线性的一对一脑行为关系,但切勿检验这些假设或违反它们的后果。我们使用四个地面脑行为映射的模拟系统地改变了这些假设,这些映射涉及逐渐复杂的关系,从一到一对一对线性映射到多一对一的非线性映射。然后,我们将各种自动编码器分类器框架应用于模拟,以显示其如何准确捕获多样化的大脑行为映射,提供了有关数据支持哪些假设的证据,并说明了违反假设时出现的问题。这种综合方法为认知神经科学提供了可靠的基础,可以有效地对复杂的神经和行为过程进行建模,从而使有关脑行为映射的性质的更合理的结论。