机载数字计算机的可用性使得平衡前馈和反馈自动飞机飞行路径控制系统概念的实际实施成为可能。解释了该概念并给出了模拟结果。飞机的敏感非线性力和力矩特性以表格形式收集为动态配平图,并反转以提供前馈命令信号路径,该路径与实际飞机串联,提供敏感的身份传递函数。通过完美的建模和无干扰,这将提供完美的轨迹控制。反馈回路围绕此线性路径闭合,以补偿干扰和不完善的建模。模拟结果和飞行测试表明,反馈仅需要总驱动信号的一小部分,而主要部分由前馈控制提供。
此处r i j =(x i -x j) / a是原子之间的距离,在实验中通过调整晶格间距a来控制。r b称为封锁半径,我们将r b / a视为以下模拟中的自由参数,a =1。< / div>封锁机制对封锁半径内同时激发原子的惩罚,导致了强烈相互互动的量子哈密顿量,在当前和近期实验中可访问的多种晶格上产生了很多丰富的现象。在本文中,我们为哈密顿式等式开发了SSE QMC实施。(1)。本文的其余部分如下组织。sec。 2,我们简要概述了SSE框架。 sec。 3,我们的SSE框架适用于等式中的哈密顿人。 (1)概述了有限温度和基态模拟。 然后,我们在SEC中显示一个和二维的模拟结果。 4,并在第二节发表结论。 5。sec。2,我们简要概述了SSE框架。sec。 3,我们的SSE框架适用于等式中的哈密顿人。 (1)概述了有限温度和基态模拟。 然后,我们在SEC中显示一个和二维的模拟结果。 4,并在第二节发表结论。 5。sec。3,我们的SSE框架适用于等式中的哈密顿人。(1)概述了有限温度和基态模拟。然后,我们在SEC中显示一个和二维的模拟结果。4,并在第二节发表结论。5。
本文介绍了一种具有改进的流量灵敏度的 μ-科里奥利质量流量传感器装置。建立了一个 FEM 模型,该模型可以估算 μ-科里奥利装置的各种参数,例如共振频率、弹簧常数和科里奥利力。然后,这些参数用于分析模型以确定流量灵敏度。所提出的 FEM 模型可以快速模拟这些属性,通过改变设计的多个维度和其他属性来实现优化,并观察它们对流量灵敏度的影响。根据模拟结果,制造了三种装置。所有装置都经过了特性分析,并对不同装置以及测量结果和模拟结果进行了比较。该模型预测的共振频率误差小于 10%,但 1 个(共 6 个)装置除外。根据装置的类型,预测的灵敏度准确度在 6-40% 以内。与典型尺寸的参考装置相比,流量灵敏度提高了约 4-11 倍。
摘要 - 本文提出了一种使用M序列多输入多重输出(MIMO)雷达作为功能性脑成像的非电离应用的功能微波成像的新概念。潜在的假设是,如果我们可以准确地检测到大脑内部的血液体积的局部变化,我们可以推断出执行各种任务时大脑的哪些部分被激活。在此角度,根据MIMO雷达框架的主要挑战是基于到达时间(TOA)结果的多目标定位。为此,我们提出了一种在相处的MIMO-RADAR中的多边定位方法,以检测脑介质内部的单个目标。引入了系统概念,并提出了使用简化物理模型的模拟结果。为了验证这一点,我们专注于短距离感应的波形多样性和信号传导策略选项。模拟结果验证了所提出的方法精确计算目标位置的有效性。
摘要 — 在本研究中,我们研究了双栅极反馈场效应晶体管 (FBFET) 器件的温度相关行为,该器件在一定温度范围 (300 K 至 400 K) 内表现出陡峭的开关特性。我们使用技术计算机辅助设计 (TCAD) 模拟分析温度特性。FBFET 是在正反馈回路中工作的半导体器件,其中通道区域中的电子和空穴调节势垒和壁的能量状态。FBFET 表现出出色的亚阈值摆幅和高开/关比,这归因于正反馈现象,从而产生理想的开关特性。在模拟结果中,观察到随着温度的升高,导通电流 (I ON )、关断电流 (I OFF ) 和导通电压 (V ON ) 均增加,而开/关电流比降低。此外,通过调节固定栅极电压可以维持高温下的操作。通过模拟结果,我们定性地研究了 FBFET 中各种器件参数随温度变化的变化,并进行了详细讨论。
本综述旨在回顾有限元法在优化工艺参数和提高粉末床熔合增材制造工艺部件的机械性能方面的应用。回顾了粉末床熔合过程模拟中的最新有限元模型。详细总结了宏观层面上激光束熔化或电子束熔化过程的数值建模方法。具体而言,阐明了零件模型预处理、工艺参数、网格方案和温度相关材料特性的重要性。还讨论了用于降低计算成本的模拟技术。然后回顾并讨论了现有的粉末床熔合过程模拟中的有限元模型。根据熔池和打印部件的特点对模拟结果进行分类。然后通过实验结果验证了模拟结果。最后,阐述了有限元法在材料设计、过程监控和控制以及工艺优化等其他增材制造问题方面的意义。总结了现有有限元模型的缺点。并提出了优化PBF工艺参数的潜在新方法。
摘要 本文利用 S2P 和 S2D 模型设置实现功率放大器的行为建模。利用标准功率放大器获得散射 (S 参数和大信号参数的测量结果。将这些参数导入 S2P 和 S2D 模型以执行 3 GHz 频率下的小信号和大信号分析。然后,将模拟结果与测量结果进行比较,以验证行为模型的有效利用。这项工作的新颖之处在于对直接从测量中获得的硅基驱动放大器特性进行模拟研究。这项工作可用于通过模拟确定驱动放大器特性对功率放大器测量的影响。最后,对不同参数的测量结果和模拟结果之间的相对误差性能分析进行研究,并计算 S11、S12、S21、S22、增益、pout、1 dB 压缩点、ACP、3 次谐波、4 次谐波的 NMSE(单位为 %)次谐波和 5 次谐波分别为 0.0083、0.0055、0.0086、0.011、0.0844、0.814、0.926、0.71、0.22、0.012 和 0.070。
有助于识别LBBB-IDCM(表2)。尽管如此,目前尚无关于如何实现诊断的建议。Blanc等人发表了第一项介绍LBBB-IDCM概念的研究。5在2005年,在29名入学患者中有5名CRT植入后一年的LV功能完全恢复(17%)。模拟结果。6,2009年和Serdoz6,2009年和Serdoz
2 不仅仅是一个图表工具!........................9 2.1 整合科学 ........................9 2.2 翻译框架 .......................12 2.3 SysML 和基于代理的表示的方面 .........15 2.3.1 观点 ............................16 2.3.2 SysML 网络 ..。。。。。。。。。。。。。。。。。。。。。。18 2.4 将 SysML 规范与基于代理的模拟接口 ....19 2.5 下一代空中交通管制系统 .........21 2.6 模拟结果 ......。。。。。。。。。。。。。。。。。。28 2.7 经验教训。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30
2 不仅仅是一个图表工具!........................9 2.1 整合科学 ........................9 2.2 翻译框架 .......................12 2.3 SysML 和基于代理的表示的方面 .........15 2.3.1 观点 ............................16 2.3.2 SysML 网络 ..。。。。。。。。。。。。。。。。。。。。。。18 2.4 将 SysML 规范与基于代理的模拟接口 ....19 2.5 下一代空中交通管制系统 .........21 2.6 模拟结果 ......。。。。。。。。。。。。。。。。。。28 2.7 经验教训。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30