摘要。漂浮的海上风力涡轮机(FOWTS)配备了各种传感器,可为涡轮机监视和控制提供有价值的数据。由于技术和运营挑战,用于精确获得的系泊线和Fairleads的负载估计可能很难且昂贵。这项研究深入研究了一种方法,其中将模拟的浮游运动测量和风速测量得出,从前瞻性的基于Nacelle的Lidar得出,被用作不同类型的神经网络的输入,以估计Fairlead张力时间张力时间序列和损害等效载荷(DELS)。fairlead张力与浮游器的动力学和作用本质上相关。因此,我们系统地分析了浮油动力学对Fairlead张力时间序列和DELS预测质量的个人贡献。通过基于NACELLE的LIDAR获得的风速测量值在近海风力涡轮机上固有地影响了平台的动力学,尤其是旋转螺距的位移和流量器的潮流位移。因此,激光雷达风速数据间接包含浮雕的动态行为,这反过来又控制着Fairlead载荷。这项研究杠杆测量的视线(LOS)风速以估计Fairlead紧张局势。该模型的训练数据是由启用的风力涡轮机仿真工具与数值LIDAR模拟框架Vicondar一起生成的。使用长期短期内存(LSTM)网络预测Fairlead张力时间序列。del预测是使用三种不同方法进行的。首先,DEL是根据预测的时间序列计算得出的。其次,使用序列至一lstm体系结构预测DELS,第三,使用卷积神经网络体系结构预测DELS。结果表明,可以从浮游运动时间序列中准确估算Fairlead张力时间序列和DEL。此外,我们发现LiDAR LOS测量值不会改善时间序列或如果可用运动测量结果。然而,使用LiDar测量作为DEL预测的模型输入,导致与使用层的位移测量相似的精度。