本文解决了对汽车制造中创新优化解决方案的需求。通过高级算法,我们回顾了现有的方法,并引入了针对该领域量身定制的新型方法。我们的文献评论确定了当前方法论中的差距和局限性。我们在汽车制造中定义了一个特定的优化问题,强调了其独特的挑战。我们的主要贡献包括:(a)探索杂化优化算法,将遗传算法与模拟退火相结合,以提高收敛速度15%,(b)整合机器学习技术的整合,导致20%的优化级别的优化误差,与静态效率相比,(c)将多个目标改进,(c)提高了25%的效率,并实现了25%的效率,以实现25%的效率,以实现25%的效率,并实现25%的效率,并提高了(c),((c),(c)促进了25%的效率,并促进了(c),并实现了25%的优化效率((c),(c),((c),(c),(c)实现了25%的优化效率,并且可以促进优化的误差(c)。提出动态优化算法,在快速环境变化期间将决策潜伏期减少30%。案例研究表明了实用性,并取得了定量结果,突出了我们方法比传统方法的优越性。此外,使用Python进行了数据分析,这有助于我们发现的鲁棒性和准确性。
随着全球气候变化变得越来越严重,森林(如重要的碳汇)对于缓解气候变化和保护生态环境具有重要意义。这项研究以中国南部的典型森林农场为研究区,建立了基于模拟退火算法的多目标森林计划模型,并与地理信息系统接触。目的是实现森林管理措施的长期科学和合理安排,以平衡木材生产和森林碳存储。结果证实,在森林分类管理和人造森林的年龄结构调整的限制下,不同的优化场景逐渐稳定相应的记录强度和40年以来的森林资源。通过将权重分配给目标功能中木材和碳固相的净值,本研究探讨了社会偏好对空间分配方案对森林管理的影响。当碳固存的重量为100%时,当前节省的节省大于从第35年开始的其他优化方案的节省,大约为8.8×10 4 m 3,并且当前的碳存储优于从25年开始的其他优化方案,在4.9×10 4 t。总而言之,这项研究可以为实际的森林管理决策提供科学基础,这有助于改善森林碳封存服务,维持生态平衡并促进区域生态可持续发展。
工业排班调度是制造业高效规划和运营的重要组成部分。挑战在于为具有多个生产基地的端到端制造系统找到最佳生产计划。该计划必须遵守许多约束,包括法律法规和生产基地之间有限的中间存储。在汽车行业等批量密集型行业,还必须满足生产目标走廊。优化目标是在满足所有约束的同时最大限度地降低劳动力成本。工业排班调度 (QISS) 的量子算法 [1] 提供了第一个完全量子的方法来寻找受数量约束的工业劳动力规划问题的精确解决方案。基于 Grover 自适应搜索 (GAS) [2, 3],它继承了 Grover 算法相对于经典非结构化搜索方法(如蛮力搜索或随机搜索)的渐近二次加速。但是,这种二次加速导致实际加速的问题规模受到限制。一方面,寻求非常大的问题的精确解是不切实际的,因为:1)解决方案空间随着问题规模呈指数增长;2)约束通常对解决方案空间施加的结构非常小。因此,必须诉诸(经典的)启发式方法,例如模拟退火 [4] 或张量网络方法 [5]。另一方面,对于可以找到精确解的足够小的问题,与经典计算机相比,量子计算机的时钟速度较差,这往往会抵消二次加速 [6]。那么一个自然的问题是:是否存在一种机制,其中 QISS 可以返回精确的解决方案,其运行时间在现实世界中是可以接受的,并且优于经典的非结构化搜索?
航空公司每天都在努力安排机组人员、航班和飞机。尾部分配是将单架飞机分配给一组航班的问题,同时确保多重约束并旨在最小化目标函数,比如运营成本。鉴于所涉及的大量可能性和约束,这个问题在过去十年中一直是一个研究案例。许多使用经典计算的解决方案已经出现,但在性能上受到限制。量子退火(QA)是一种使用量子力学在能量景观上寻找全局最小能级的启发式技术。由于其特性,它在解决一些复杂的优化问题方面已被证明具有明显的优势,是一种很有前途的技术,可应用于多个领域。在本研究中,尾部分配问题被设置为二次无约束二元优化(QUBO)模型,使用两种不同的技术,并使用一个经典求解器和两个混合求解器进行求解。测试基于从真实世界数据中提取的数据,分析了实施在时间、可扩展性和所获解决方案的质量(即最低运营成本)方面的性能。我们得出的结论是,使用库来建模问题以及考虑单个航班而不是将它们预先聚合成字符串可能会成为可扩展性的瓶颈。此外,我们发现,与模拟退火 (SA) 等经典启发式算法相比,使用混合求解器之一获得此问题更好解决方案的可能性更高。这些发现可以作为进一步研究的基础。
摘要 - 安装是印刷电路板(PCB)物理设计的第一步,并且需要大量的时间和域专业知识。放置质量会影响子分析任务的性能,并且最佳位置的产生至少是NP兼容。虽然随机优化和分析技术取得了一定的成功,但它们通常缺乏对人类工程师的直觉理解。在这项研究中,我们提出了一种新颖的端到端机器学习(ML)方法来学习基本的放置技术并利用经验来有效地优化PCB布局。为了实现这一目标,我们将PCB放置问题作为马尔可夫决策过程(MDP),并使用加固学习(RL)学习通用位置技术。代理驱动的数据收集过程产生了足以在自适应奖励信号的指导下学习通用政策的高度多样性和一致的数据点。与看不见的电路的最新模拟退火方法相比,经过TD3和SAC训练的由此产生的策略平均降低了路由后线长度的17%和21%。定性分析表明,这些政策学习了基本的放置技术,并证明了对潜在问题动态的理解。共同证明了新兴的协作或竞争行为以及更快的放置融合,有时超过数量级。索引术语 - 电路布局,放置,加固学习
微电网是利用可再生能源的有效方式,尤其可以满足偏远岛屿的电力需求。海岛微电网的运行优化对于确保整个微电网系统的有效性能至关重要,而且它通常是一个多约束和多目标优化问题。本研究的主要贡献是针对偏远岛屿独立微电网系统提供了一种运行优化方法,该系统包括风电、光伏、电池和柴油发电机。本文提出了一种新的独立微电网运行优化模型,其中单独考虑电池系统;建立了考虑经济成本、电池折旧成本和环境保护成本的多目标日前优化模型。在优化中,选择柴油发电机和储能系统的输出功率作为决策变量。为此,开发了一种结合粒子群优化(PSO)算法和模拟退火(SA)算法的高效搜索算法。采用混合算法寻找优化问题的Pareto解集,将搜索结果与传统PSO算法的结果进行比较,并提出一种基于熵权法的灰靶决策理论从所有解中寻找最优权衡调度方案,并与另外两种常用的主客观方法的结果进行比较。结果表明,所提出的优化方法可应用于微电网系统的日前运行优化,帮助用户获得独立微电网的最佳折衷运行方案。
摘要 在可再生能源的背景下,虚拟发电厂 (VPP) 被视为智能控制复杂、分散、分布式和异构发电过程的关键技术。然而,VPP 的经济和生态控制是一项非常关键的任务:由于 VPP 在复杂性、技术组合、环境条件和运行期间需要优化的目标方面具有很大的变化性,单个 VPP 的控制需要能够有效地考虑所有这些单独的约束条件。因此,我们在本文中提出了一种结合计算智能 (CI) 元启发式的 VPP 抽象控制方法,该方法旨在灵活适用于不同的 VPP 规模、目标和发电厂类型。此外,该方法还提供了构建分层 VPP 的可能性,因为这通常是系统运营商的要求。为了证明该控制方法的有效性,考虑了三个示例性优化目标,并将其应用于不同组合的扁平/分层 VPP:最小化运行储备需求、最小化 CO 2 排放量和最大化发电厂灵活性。此外,该方法与三个示例性 CI 元启发式方法相结合并进行评估:模拟退火 (SA)、粒子群优化 (PSO) 和蚁群优化 (ACO)。为了使这种先进的 CI 元启发式方法在优化问题中的使用合法化,梯度下降优化 (GDO) 作为一种传统的优化技术也被考虑在内。基于具体的示例场景以及广泛的汇总测试运行,结果表明该控制方法能够有效地优化各种 VPP 组合以实现给定的目标。
功率流 (PF) 分析是研究电网中功率流的一种基础计算方法。该分析涉及求解一组非线性和非凸微分代数方程。因此,最先进的 PF 分析求解器面临着可扩展性和收敛性的挑战,特别是对于大规模和/或病态情况,这些情况的特点是可再生能源渗透率高。事实证明,绝热量子计算范式能够有效地找到嘈杂中尺度量子 (NISQ) 时代的组合问题的解决方案,并且它可以潜在地解决最先进的 PF 求解器所带来的局限性。我们首次提出了一种用于高效 PF 分析的新型绝热量子计算方法。我们的主要贡献是 (i) 一种组合 PF 算法和一个符合 PF 分析原理的修改版本,称为绝热量子 PF 算法 (AQPF),它们都使用二次无约束二进制优化 (QUBO) 和 Ising 模型公式;(ii) AQPF 算法的可扩展性研究;(iii) AQPF 算法的扩展,以使用分区方法处理更大的问题规模。使用不同的测试系统大小在 D-Wave 的 Advantage™ 量子退火器、富士通的数字退火器 V3、D-Wave 的量子-经典混合退火器和两个在经典计算机硬件上运行的模拟退火器上进行了数值实验。报告的结果证明了所提出的 AQPF 算法的有效性和高精度,以及它在使用量子和量子启发算法处理病态情况的同时加速 PF 分析过程的潜力。
课程(均为 3 学分课程) EEE 6002:电气与电子工程选题 课程内容由课程老师在 EEE 系研究生委员会(BPGS)批准下决定。(注意:每个学生只能选修一次本课程) EEE 6101:非线性系统分析 数值方法。图解法。已知精确解的方程。奇点分析。解析方法。受迫振动系统。变系数线性微分方程。非线性系统的稳定性。 EEE 6103:人工神经网络 生物神经系统:大脑和神经元。人工神经网络。历史背景。赫布联想子。感知器:学习规则、说明、证明、失败 自适应线性(ADALINE)和多重自适应线性(MADALINE)网络。多层感知:生成内部表示 反向传播、级联相关和反传播网络。高阶和双向关联记忆。霍普菲尔德网络:李亚普诺夫能量函数。吸引盆地。概率更新:模拟退火、玻尔兹曼机。自适应谐振理论 (ART) 网络 ART1、ART2、模糊 ART 映射 (ARTMAP) 网络。Kohonen 特征图、学习矢量量化 (LVQ) 网络。新兴主题:卷积神经网络、深度神经网络。神经网络的应用。EEE 6301:功率半导体电路* 静态开关器件,SCR、BJT、MOSFET、IGBT、SIT、GTO、MCT 的特性。静态功率转换器的分类及其应用。静态功率转换器的控制电路。脉冲宽度调制;静态功率转换器的 PWM 控制。开关模式 DC-DC 转换器、谐振转换器、静态转换器波形的傅里叶分析、静态转换器的 HD、THD、pf、ZVS 和 ZCS。交流驱动器的磁滞电流。 *本课程也属于 EEPS 组
量子力学的测量公设指出,在测量可观测量 ˆ o 时,只能观察到其特征值 on ,并且系统的状态将在测量之后立即投影到相应的特征态 | on ⟩ ,对于该特征态 ˆ o | on ⟩= on | on ⟩ 。此外,Born 规则规定,对于初始量子态 | ψ 0 ⟩ ,出现这种结果的概率为 pn = |⟨ on | ψ 0 ⟩| 2 。是否能够推导出该规则并将其从量子力学公设中剔除仍然是一个基本问题[1]。从量子信息处理的角度来看,这种谱投影的一般构造也具有实际意义。例如,参考文献[2] 构建了一种量子行走方法来实现这一点,并强调了其在执行优化问题的量子模拟退火 (QSA) 算法的关键步骤中的实用性[3]。后者可以作为绝热量子计算 (AQC) [4,5] 的替代方法。事实上,标准量子相位估计 (QPE) [6] 及其变体 [7–9] 也可以在系统不处于本征态时实现近似谱投影。QPE 在很多量子信息处理应用中都至关重要 [6],包括因式分解,以及与本文更相关的文献 [2] 中的量子行走谱测量,以及制备热吉布斯态的相关方法 [10–13]。标准 QPE 使用 O(tg) 个受控 c − U2k 形式酉门(k = 0 至 tg − 1)对相位值的 tg 个二进制数字进行编码(以 2π 为单位),并且它需要 O(t2g) 个门在逆量子傅里叶变换中检索相位 [6]。至于 QPE 的精度,为了使相位在 m 个二进制数字中准确,且成功概率至少为 1 − ϵ ,所需的辅助量子比特总数为 tg = m + log 2 (2 ϵ + 1 / 2 ϵ ) [ 6 ] 。换句话说,使用 tg 个辅助量子比特可以使相位值在 tg − log 2 (2 ϵ + 1 / 2 ϵ ) 二进制数字中准确。因此,相位的精度受到用于表示相位值以及用作光谱投影子程序时可用的辅助量子比特数量的限制