建筑能源灵活性对于改善当地可再生能源消费和提高建筑自给自足能力至关重要。热带地区丰富的太阳能资源为减少碳排放和实现净零排放提供了绝佳机会,但该地区的建筑能源灵活性研究仍不足。因此,本研究提出并实施了一种基于模型预测控制 (MPC) 的实用控制框架,揭示了采用混合冷却系统的热带办公楼的能源灵活性潜力。考虑到数据可用性对实际控制性能的影响,还在实际和虚拟的端到端实验中研究了具有替代数据使用配置的 MPC。首次证明所提出的框架可以有效调节建筑负荷。与基线控制相比,光伏自耗和建筑自给自足分别提高了 19.5% 和 10.6%。在测试的三个数据类别(内部干扰、外部干扰和系统条件)中,准确的当地天气条件被证明对理想的控制结果最为关键。此外,模拟量化了不同建筑特征下更高数据粒度带来的好处。基于系统实验,建立了数据可用性与控制性能之间的关系。据此,提出了一个以数据为中心的框架,以提高最优控制研究的可重复性和可扩展性。可以指导未来的研究,以促进大规模的实际实施。
量子计算机利用量子物理现象创建专用硬件,可以高效执行针对纠缠叠加数据的算法。该硬件必须连接到传统主机并由其控制。然而,可以说,迄今为止的主要好处在于重新表述问题以利用纠缠叠加,而不是使用奇异的物理机制来执行计算——这种重新表述往往会为传统计算机产生更高效的算法。并行位模式计算并不模拟量子计算,但提供了一种使用非量子、位级、大规模并行、SIMD 硬件来高效执行利用叠加和纠缠的广泛算法的方法。正如量子硬件需要传统主机一样,并行位模式硬件也需要。因此,当前的工作提出了 Tangled:一种简单的概念验证传统处理器设计,其中包含一个与集成并行位模式协处理器 (Qat) 紧密耦合的接口。通过构建指令集、为流水线实现构建完整的 Verilog 设计,以及观察接口在执行涉及纠缠、叠加值运算的简单量子启发算法中的有效性,研究了这种在传统计算和量子启发计算之间接口的可行性。
数字量子计算范式提供了非常理想的特性,例如通用性、可扩展性和量子纠错。然而,在当前的 NISQ 设备时代,实现有用的纠错量子算法所需的物理资源是令人望而却步的。作为执行通用量子计算的替代途径,在 NISQ 时代的限制内,我们建议将数字单量子位操作与模拟多量子位纠缠块合并,这种方法我们称之为数字模拟量子计算 (DAQC)。沿着这个思路,虽然这些技术可以扩展到任何资源,但我们建议将由无处不在的 Ising 汉密尔顿量生成的幺正用于模拟纠缠块,并证明其通用性。我们构建了显式 DAQC 协议,通过单量子位门和固定的均匀 Ising 汉密尔顿量来有效模拟任意非均匀 Ising、二体和 M 体自旋汉密尔顿动力学。此外,我们还比较了顺序方法(其中交互是打开和关闭的)(分步 DAQC)和始终开启的多量子比特交互,中间穿插着快速单量子比特脉冲(爆炸式 DAQC)。最后,我们进行了数值测试,比较了纯数字方案和 DAQC 协议,结果显示后者的性能明显更好。所提出的 DAQC 方法将模拟量子计算的稳健性与数字方法的灵活性相结合。
摘要量子计算机可以执行超出经典计算机功能的计算任务,例如在材料科学和化学中模拟量子系统。量子传送是取决于量子计算产生的纠缠状态,量子信息在远处的传递。它正在成为发送信息的一种更安全的方式,但是结果中有噪音。我们试图减轻在IBM云量子计算机上模拟的量子传送误差。我们假设所有IBM量子计算机上的噪声都可以通过降噪矩阵来减轻。我们创建了一个量子传送电路,该电路以四种不同量子状态的500、1000、5000和8192的镜头进行了运行。我们研究了每台机器中的一般错误趋势,并创建了两种类型的降噪矩阵:通用和特定于机器。然后,我们比较了两种矩阵的减轻结果。我们发现在试验期间,每台IBM量子计算机都有噪音。三种测试机器的量子传送的通用降噪矩阵可减少大多数试验的误差,而在缓解后大多数情况下,大多数情况下的误差都在1%-5%之间变化。机器特异性降噪矩阵减轻了大多数机器的误差仅为1-2%,这与未限制的结果相比急剧下降(在三台机器上不同于1%-16%)。与通用缓解矩阵相比,机器特异性矩阵的错误率具有较小的可变性。我们得出的结论是,可以找到三台机器的通用缓解矩阵,但是机器特定的降解矩阵能够实现更准确的结果。
摘要。Quantum Flytrap 的 Virtual Lab 是一个无代码的光学桌在线实验室,以交互和直观的方式呈现量子现象。它支持最多三个纠缠光子的实时模拟。用户可以使用拖放式图形界面放置典型的光学元件(例如分束器、偏振器、法拉第旋转器和探测器)。Virtual Lab 以两种模式运行。沙盒模式允许用户组合任意设置。Quantum Game 是 Virtual Lab 功能的入门,适合没有接触过量子力学的用户。我们介绍了纠缠态和纠缠度量的可视化表示。它包括 ket 符号的交互式可视化和量子算子的热图式可视化。这些量子可视化可以应用于任何离散量子系统,包括具有量子位和自旋链的量子电路。这些工具以开源 TypeScript 包的形式提供 - Quantum Tensors 和 BraKetVue。虚拟实验室可以探索量子物理的本质(状态演化、纠缠和测量)、模拟量子计算(例如 Deutsch-Jozsa 算法)、使用量子密码术(例如 Ekert 协议)、探索违反直觉的量子现象(例如量子隐形传态和违反贝尔不等式),以及重现历史实验(例如迈克尔逊-莫雷干涉仪)。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物的出处,包括其 DOI。[DOI:10.1117/1.OE.61.8.081808]
UT55A 数字指示调节器(电源 100-240 V AC)(配备传送输出或 15 V DC 回路电源,3 个 DI 和 3 个 DO) 标准型 位置比例型 加热 / 冷却型 无 远程(1 个附加辅助模拟)输入、6 个附加 DI、5 个附加 DO 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*1) (*2) 远程(1 个附加辅助模拟)输入、1 个附加 DI 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*2) 5 个附加 DI 和 5 个附加 DO 远程(1 个附加辅助模拟)输入和 1 个附加 DI 远程(1 个附加辅助模拟)输入、6 个附加 Dl 和 5 个附加 DO 5 个附加 DI 和 15 个附加 DO (*1) 3附加辅助模拟输入和 3 个附加 DI 无 RS-485 通信(最大 38.4 kbps,2 线/4 线) 以太网通信(带串行网关功能) CC-Link 通信(带 Modbus 主站功能) PROFIBUS-DP 通信(带 Modbus 主站功能) DeviceNet 通信(带 Modbus 主站功能) 英语(默认。可通过设置切换到其他语言。) 德语(默认。可通过设置切换到其他语言。) 法语(默认。可通过设置切换到其他语言。) 西班牙语(默认。可通过设置切换到其他语言。) 白色(浅灰色) 黑色(浅炭灰色) 始终为 “-00” 附加直接输入(TC 和,3 线/4 线 RTD)和电流至远程输入(1 个附加辅助模拟量),1 个 DI 待删除 (*4) 24 V DC 回路电源 (*5) 加热器断线警报 (*6) 电源 24 V AC/DC 涂层 (*7)
UT55A 数字指示调节器(电源 100-240 V AC)(配备传送输出或 15 V DC 回路电源,3 个 DI 和 3 个 DO) 标准型 位置比例型 加热 / 冷却型 无 远程(1 个附加辅助模拟)输入、6 个附加 DI、5 个附加 DO 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*1) (*2) 远程(1 个附加辅助模拟)输入、1 个附加 DI 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*2) 5 个附加 DI 和 5 个附加 DO 远程(1 个附加辅助模拟)输入和 1 个附加 DI 远程(1 个附加辅助模拟)输入、6 个附加 Dl 和 5 个附加 DO 5 个附加 DI 和 15 个附加 DO (*1) 3附加辅助模拟输入和 3 个附加 DI 无 RS-485 通信(最大 38.4 kbps,2 线/4 线) 以太网通信(带串行网关功能) CC-Link 通信(带 Modbus 主站功能) PROFIBUS-DP 通信(带 Modbus 主站功能) DeviceNet 通信(带 Modbus 主站功能) 英语(默认。可通过设置切换到其他语言。) 德语(默认。可通过设置切换到其他语言。) 法语(默认。可通过设置切换到其他语言。) 西班牙语(默认。可通过设置切换到其他语言。) 白色(浅灰色) 黑色(浅炭灰色) 始终为 “-00” 附加直接输入(TC 和,3 线/4 线 RTD)和电流至远程输入(1 个附加辅助模拟量),1 个 DI 待删除 (*4) 24 V DC 回路电源 (*5) 加热器断线警报 (*6) 电源 24 V AC/DC 涂层 (*7)
量子计算利用量子力学的独特性质(如叠加和纠缠),以不同于传统计算机的方式执行计算任务 [1]。20 世纪 80 年代初,理查德·费曼 (Richard Feynman) 认为量子架构是模拟自然界中实际量子系统的合适方法 [2],自此以后,人们对量子系统在计算任务中的应用给予了极大关注。量子信息和量子计算最伟大、最著名的成就包括超密集编码 [3]、密码系统的量子公钥分发的 BB-84 算法 [4]、Shor 的整数因式分解算法 [5]、Grover 的数据库搜索算法 [6],以及其他同样重要或相关的示例。这些进展也已触及数学和自然科学的重要领域,量子算法和电路设计已被开发用于完成线性代数任务,如矩阵的特征值[7,8]和奇异值[9,10]分解、求解线性方程组[11]、求解线性[12-14]和非线性[15]微分方程、偏非齐次线性微分方程[16],以及其他潜在应用。当前,噪声中尺度量子 (NISQ) 设备取得了一些进展,例如,任何经典浅电路都无法在合理时间内解决的问题,但事实证明可以通过浅量子电路解决 [17]、谷歌团队利用超导量子处理器架构实现的量子霸权 [18]、使用玻色子采样实现的量子优势 [19],以及在 D-Wave 系统中通过基于量子的架构模拟量子系统 [20]。一般来说,量子算法的实现基于许多步骤,包括数据预处理、输入量子态的准备、输入信息的处理
UT55A 数字指示调节器(电源 100-240 V AC)(配备传送输出或 15 V DC 回路电源,3 个 DI 和 3 个 DO) 标准型 位置比例型 加热 / 冷却型 无 远程(1 个附加辅助模拟)输入、6 个附加 DI、5 个附加 DO 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*1) (*2) 远程(1 个附加辅助模拟)输入、1 个附加 DI 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*2) 5 个附加 DI 和 5 个附加 DO 远程(1 个附加辅助模拟)输入和 1 个附加 DI 远程(1 个附加辅助模拟)输入、6 个附加 Dl 和 5 个附加 DO 5 个附加 DI 和 15 个附加 DO (*1) 3附加辅助模拟输入和 3 个附加 DI 无 RS-485 通信(最大 38.4 kbps,2 线/4 线) 以太网通信(带串行网关功能) CC-Link 通信(带 Modbus 主站功能) PROFIBUS-DP 通信(带 Modbus 主站功能) DeviceNet 通信(带 Modbus 主站功能) 英语(默认。可通过设置切换到其他语言。) 德语(默认。可通过设置切换到其他语言。) 法语(默认。可通过设置切换到其他语言。) 西班牙语(默认。可通过设置切换到其他语言。) 白色(浅灰色) 黑色(浅炭灰色) 始终为 “-00” 附加直接输入(TC 和,3 线/4 线 RTD)和电流至远程输入(1 个附加辅助模拟量),1 个 DI 待删除 (*4) 24 V DC 回路电源 (*5) 加热器断线警报 (*6) 电源 24 V AC/DC 涂层 (*7)
UT55A 数字指示调节器(电源 100-240 V AC)(配备传送输出或 15 V DC 回路电源,3 个 DI 和 3 个 DO) 标准型 位置比例型 加热 / 冷却型 无 远程(1 个附加辅助模拟)输入、6 个附加 DI、5 个附加 DO 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*1) (*2) 远程(1 个附加辅助模拟)输入、1 个附加 DI 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*2) 5 个附加 DI 和 5 个附加 DO 远程(1 个附加辅助模拟)输入和 1 个附加 DI 远程(1 个附加辅助模拟)输入、6 个附加 Dl 和 5 个附加 DO 5 个附加 DI 和 15 个附加 DO (*1) 3附加辅助模拟输入和 3 个附加 DI 无 RS-485 通信(最大 38.4 kbps,2 线/4 线) 以太网通信(带串行网关功能) CC-Link 通信(带 Modbus 主站功能) PROFIBUS-DP 通信(带 Modbus 主站功能) DeviceNet 通信(带 Modbus 主站功能) 英语(默认。可通过设置切换到其他语言。) 德语(默认。可通过设置切换到其他语言。) 法语(默认。可通过设置切换到其他语言。) 西班牙语(默认。可通过设置切换到其他语言。) 白色(浅灰色) 黑色(浅炭灰色) 始终为 “-00” 附加直接输入(TC 和,3 线/4 线 RTD)和电流至远程输入(1 个附加辅助模拟量),1 个 DI 待删除 (*4) 24 V DC 回路电源 (*5) 加热器断线警报 (*6) 电源 24 V AC/DC 涂层 (*7)