摘要。车辆到全能(V2X)技术的最新进步使自动驾驶汽车能够共享感应信息以通过遮挡来查看,从而极大地提高了感知能力。但是,没有现实世界中的数据集来促进真正的V2X合作感知研究 - 现有数据集仅支持车辆到基础设施合作或车辆到车辆的合作。在本文中,我们提出了V2X-Real,这是一个大规模数据集,其中包括多种车辆和智能基础设施的混合物,以促进V2X合作感知的发展,并具有多模式感测数据。我们的V2X-Real是使用两个连接的自动化车辆和两个智能基础架构收集的,它们都配备了包括LIDAR传感器和多视图摄像头在内的多模态传感器。整个数据集包含33K激光镜框架和171K摄像机数据,在非常挑战的城市场景中,有10个类别的注释框架超过120万。根据协作模式和自我观点,我们为以车辆为中心,以基础设施为中心,车辆到车辆和基础设施到基础结构的合作社来得出四种类型的数据集。提供了SOTA合作感知方法的综合多级多级多代理基准。V2X-REAL数据集和代码库可在https://mobility-lab.seas.ucla.edu/ v2x-real上找到。
摘要 - 准确的工作量和资源预测是为了实现积极,动态和自适应资源分配,用于构建具有成本效益,能源良好和绿色云数据中心(CDC),为用户提供令人满意的优质服务,并为云提供者提供高收入。这很具有挑战性,因为CDC中急剧增加和大规模的工作量和资源使用的模式随时间而变化显着。当前的预测方法通常无法处理隐式噪声数据,并在工作量和资源时间序列中捕获非线性,长期和短期和空间特征,从而导致预测准确性有限。为解决这些问题,这项工作设计了一种名为VSBG的新型预测方法,该方法无缝且创新地结合了变分模式分解(VMD),Savitzky Golay(SG)滤波器(SG)滤波器,双向长期短期内存(LSTM)和GRID LSTM和GRID LSTM和GRID LSTM,以预测工作量和资源在CDC中的工作量和资源使用。vsbg在执行其预测之前,以四步骤的方式以四步方式整合VMD和SGFURTER。VSBG利用VMD将非机构工作负载和资源时间序列分为多种模式函数。然后,在VSBG中,这项工作设计了二次惩罚,用拉格朗日乘数将其最小化,并采用对数操作和SG滤波器来平滑第一个模式功能,以消除噪声干扰。最后,VSBG首次系统地捕获了具有两个Bilstm层的流量和复杂时间序列数据的深度和时间特征,在此之间,GridLSTM层在其中,从而准确地预测了CDC中的工作量和资源。具有不同现实世界数据集的广泛实验证明,VSBG在预测准确性和收敛速度上的整体最新算法都优于整体。
摘要 要理解物体表征,需要对视觉世界中的物体进行广泛、全面的采样,并对大脑活动和行为进行密集测量。在这里,我们展示了 THINGS-data,这是一个多模态的人类大规模神经成像和行为数据集集合,包括密集采样的功能性 MRI 和脑磁图记录,以及针对多达 1,854 个物体概念的数千张照片的 470 万个相似性判断。THINGS-data 的独特之处在于其丰富的注释对象范围,允许大规模测试无数假设,同时评估先前发现的可重复性。除了每个单独的数据集承诺的独特见解之外,THINGS-data 的多模态性还允许组合数据集,从而比以前更广泛地了解物体处理。我们的分析证明了数据集的高质量,并提供了五个假设驱动和数据驱动的应用程序示例。 THINGS-data 是 THINGS 计划 ( https://things-initiative.org ) 的核心公开发布版本,旨在弥合学科之间的差距和认知神经科学的进步。
4.4 书籍.............................................................................................................................................. - 13 -
ADS5410 是一款 12 位 ADC。其低功耗(360 mW)和 80 Msps 的高采样率是通过使用基于先进低压 CMOS 工艺构建的先进开关电容流水线架构实现的。ADS5410 模拟核心主要采用 3.3 V 电源供电,消耗大部分电量。数字核心采用 1.8 V 电源供电。如果设计中没有 1.8 V 电源,则可以使用 TPS76318 从 3.3 V AVDD 电源获取 1.8 V。为了增加接口灵活性,数字输出电源 (OV DD ) 可以设置为 1.6 V 至 3.6 V。ADC 核心由 10 个流水线级和一个闪存 ADC 组成。每个级产生 1.5 位。上升时钟沿和下降时钟沿都用于每半个时钟将样本通过流水线传输一次,总共六个时钟周期。
THS10064 是一款 CMOS、低功耗、10 位、6 MSPS 模数转换器 (ADC)。其速度、分辨率、带宽和单电源操作非常适合雷达、成像、高速采集和通信应用。具有输出纠错逻辑的多级流水线架构可在整个工作温度范围内保证无丢失代码。内部控制寄存器用于将 ADC 编程为所需模式。THS10064 包含四个模拟输入,可同时采样。这些输入可以单独选择并配置为单端或差分输入。集成的 16 字深 FIFO 允许存储数据,以改善向处理器的数据传输。提供 ADC 的内部参考电压(1.5 V 和 3.5 V)。
电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................
电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................
电源电压范围,V CC (见注释 1) –0.5 V 至 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,V O –0.3 V 至 V CC + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 正参考电压,V ref+ V CC + 0.1 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .负参考电压,V ref– –0.1 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流,I I (任何输入) ± 20 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值总输入电流,I I (所有输入) ± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . 自然通风工作温度范围,T A :TLC2543C 0 ° C 至 70 ° C . . . . . . . . . . . . . . . . . . TLC2543I –40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg –65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . . . . . . . .