碳材料具有工业应用,原因是它们的特征,例如电导率,化学和热稳定性,轻质重量以及制备成本较低。1 neverther,除了它们的化学量外,直到最近才对碳材料的实际结构进行了充分的文献证明。分析技术的最新发展,用于探测碳材料的结构,例如传输电子显微镜,2-4拉曼光谱,5-7和高感温度的启用方法,8,9对实际的三维(3D)在该碳材料上的碳质量和含量分析的含量有了了解的理解。使用开发的纳米级分析工具,纳米结构材料的合成和理解已扩大了其领域和应用。已经研究了各种合成方法,借助于纳米结构碳材料的晚期纳米结构分析,包括弧排放,10个模板碳化,2,11将石墨烯氧化物的转化为12,13,12,13向其还原的模拟,13,14个有机合成,15,16个拓扑,15,16个拓扑,17-16拓扑,17-19;20-24因此,许多先进的碳材料,包括碳纤维,碳纳米管(CNT),石墨,石墨,结构石墨和碳泡沫的物理化学特性,以改善的物理化学特性,它们以3亿亿美元的年度全球全球范围(cagr)增长率(cagr)增长(cagr)的平均增长率(cagr) 25他们25他们
为保护环境,最好将导电聚合物封装起来。在模板合成中,将形成的纳米线嵌入模板中,可以保证这一点。最常用的模板是多孔氧化铝膜 [5] 和市售的屏幕过滤器(例如 Nuclepore 和 Poretics 公司的产品),它们是薄聚碳酸酯箔,上面有通过蚀刻核损伤轨迹获得的孔隙 [6]。典型的模板具有高孔隙密度,~ 10 -10 lclcm -2。这使得可以制造几乎相同的纳米线的大型组件,非常适合测量磁性 [7] 和光学 [8] 特性。与这些测量相比,由于测量灵敏度有限,需要大型组件,而电测量最好在一根纳米线上进行。就电学性质而言,模板合成有望成为一种有效的方法:人们已经研究了由周期性堆叠的磁性多层组成的高纵横比纳米线[9]。另一方面,Cai 和 Martin [3] 报道了模板合成的复合材料具有惊人的尺寸依赖性。无论哪种情况,都缺乏一种可靠的方法,可以电处理单个纳米线。
由密切包装配体形成的非孔产物。用于比较,金属 - 具有协调键和共价键的有机框架(MOF)和共价有机框架(COF),可以基于网状化学的合理设计和合成。18,19因此,它需要一种新的合成方法来控制HOF的形成并丰富它们的结构多样性。模板合成一直是构建多孔材料(例如MOF和COF)的重要策略。例如,通过合成后的金属化/脱位,20,21金属交换,22 - 24或配体交换25 - 28已被广泛用于获得具有与MOF-emplate相同结构/拓扑的靶向功能MOF。这些模板合成利用了可逆的协调键,这些键可以在合成后的修改过程中破坏和改革。可逆协调键也已用于模板COFS 29和多孔聚合物的合成。30 - 32 Yaghi及其同事证明了一个代表性的例子,这些示例使用了Cu I-苯噻吩会协调部分的可逆形成/断裂来构建具有编织结构的COF。29铜中心在COF结构内的编织上是独立的,并用作将螺纹带入编织模式的模板,而不是更常见的平行排列。可以在不破坏COF结构的情况下去除弱的cu i。这些作品激发了我们使用协调债券指导HOF的组装。要实现协调键指导的HOF合成的设计,基于弱协调键的MOF将为
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
逆转录酶(RTS),使用RNA模板合成DNA的酶,广泛分布在生命的所有领域中。这些酶在多种过程中具有作用,包括在逆转和移动遗传元素以及端粒生物学的生命周期中。在细菌中,RT对抗爆抗防御特别重要,并且被多种遗传系统使用,其作用是保护细菌免受噬菌体的影响。例如,一些CRISPR-CAS系统使用逆转录对RNA噬菌体(3)的核酸(“间隔者”)的新免疫盒(“垫片”)。rts也用于称为回试的反出发遗传系统中,该遗传系统由三个编码RT,NCRNA和“效应子”毒素的基因组成。通过反向转化的过程,反式反应产生嵌合核酸链,其中DNA和RNA共价链接。该嵌合DNA-RNA分子的作用尚不清楚,但已显示为