随着信息技术的发展,基于模糊的系统在计算智能上很流行,并应用于信息科学,数学,控制工程和消费电子等领域。尤其是在消费电子领域中,基于模糊的系统有助于基于数据和知识的建模,并处理具有数量和定性复杂性的现实世界问题,并在维度和不确定性中处理。基于模糊的系统与消费电子设备的婚姻将以人们与设备互动的方式进行革命。从基于细微的因素调整温度的智能恒温器中,以了解语言的微妙之处的语音助手,基于模糊的系统为我们的小工具带来了类似人类的理解和适应性。处理不确定性和不准确的能力为更个性化,高效和以用户为中心的体验铺平了道路。随着消费电子领域的不断发展,其与模糊逻辑的集成将发挥更大的重要作用,预计会扩展,从而提供更智能和以用户的解决方案。因此,当传统的二元逻辑无法处理不精确或不确定的信息时,基于模糊的系统是宝贵的。
模糊控制是各种具有挑战性的控制应用的实用替代方案,因为它提供了一种通过使用启发式信息构建非线性控制器的便捷方法。此类启发式信息可能来自充当过程“人在环”控制器的操作员。在模糊控制设计方法中,我们要求该操作员写下一组有关如何控制过程的规则,然后将其纳入模拟人类决策过程的模糊控制器中。在其他情况下,启发式信息可能来自对特定过程进行过大量数学建模、分析和控制算法开发的控制工程师。同样,此类专业知识被加载到模糊控制器中,以自动化专家的推理过程和行动。无论启发式控制知识来自何处,模糊控制都提供了一种用户友好的形式化来表示和实施我们关于如何实现高性能控制的想法。在本书中,我们从控制工程的角度介绍了模糊控制。我们既关注构建非线性控制器以应对具有挑战性的实际应用,也关注对模糊控制系统动态的基本理解,以便我们在实施之前能够从数学上验证其属性(例如稳定性)。我们强调工程评估
塔林技术大学机械与工业工程系,Ehitajate Tee 5,19086 Tallinn,Estonia B最佳城市中心最佳城市中心,塔林大学技术大学,Ehitajate Tee 5,19086 Tee 5,19086,Estonia,Estonia,Estonia,Estonia,Estonia,2023年11月7日获得了2023年12月18日,在线接受了2022年3月21日,2024年2024年2024年20月202日。这是根据创意共享归因的条款和条件分发的一份开放访问文章4.0国际许可CC(http://creativecommons.org/licenses/4.0)。摘要。在当前的研究中,已经实施了两种广泛使用的多标准决策方法,模糊分析层次结构过程(AHP)和模糊维科尔方法,以优先考虑多标准决策问题的标准。在此,案例研究是一种自动驾驶汽车,塔尔特伊斯·伊斯·阿维(Taltech Iseauto Av Shuttle)是在塔尔特赫大学(Taltech University)开发的。当前问题的标准由专家评估,在形成成对矩阵后,这些矩阵通过算术平均值的最大最小方法汇总。随后在模糊AHP的情况下,通过计算权重并使其标准化,获得了每个标准的相对重要性,从而导致标准的排名。此外,在模糊维科尔方法的情况下,聚合的成对矩阵加权并归一化。呈现并比较从两种方法中获得的排名。讨论了多标准决策方法模糊AHP和Vikor的优势和缺点,该方法用于自动驾驶汽车系统的风险分析。关键字:多标准决策问题,模糊分析层次结构过程(AHP),模糊维科尔方法,标准的优先级,自动驾驶汽车(AV)。简介研究多标准决策(MCDM)问题的重要性在我们日益复杂的决策世界中不能低估。在决策过程的背景下,由于同时考虑了多个经常相互矛盾的标准,因此出现了此类问题。对于对选项的系统评估,MCDM方法提供了一种方法,其中考虑了不同的定性和数值方面。他们的相关性扩展到从商业和工程到环境心理管理和医疗保健的各个领域。这些标准通常并不同等重要,替代方案的性能却大不相同。正式方法对于提供结构化的决策过程是必要的。A number of techniques have been introduced for handling multiple criteria, for instance, evo lutionary optimization [1–4], the analytic hierarchy process (AHP), the technique for order of preference by similarity to ideal solution (TOPSIS), and the vlsekriterijumska optimizacija i kompromisno resenje (multi criteria optimization and compromise solution – Vikor)方法[5-9]。为了确定在自主车辆系统中对这些重要标准进行排名的两种知名MCDM技术的功效,本文比较了AHP和Vikor方法。
模糊控制是各种具有挑战性的控制应用的实用替代方案,因为它提供了一种通过使用启发式信息构建非线性控制器的便捷方法。此类启发式信息可能来自充当过程“人在环”控制器的操作员。在模糊控制设计方法中,我们要求该操作员写下一组有关如何控制过程的规则,然后将其纳入模拟人类决策过程的模糊控制器中。在其他情况下,启发式信息可能来自对特定过程进行过大量数学建模、分析和控制算法开发的控制工程师。同样,此类专业知识被加载到模糊控制器中,以自动化专家的推理过程和行动。无论启发式控制知识来自何处,模糊控制都提供了一种用户友好的形式化来表示和实施我们关于如何实现高性能控制的想法。在本书中,我们从控制工程的角度介绍了模糊控制。我们既关注构建非线性控制器以应对具有挑战性的实际应用,也关注对模糊控制系统动态的基本理解,以便我们在实施之前能够从数学上验证其属性(例如稳定性)。我们强调工程评估
对文献的综述深入研究了模糊图,直觉模糊图和中性粒细胞图的能量测量和决策过程之间的复杂相互作用。在图理论中,能量是用于测量结构特性并评估决策模型动力学的关键数量。考虑到涉及决策的上下文中能量测量的理论基础,计算技术和实际应用的理论基础,考虑到模糊,直觉模糊和中性粒细胞图模型所带来的特殊特征。本综述试图为希望使用能量度量的研究人员和从业者提供彻底的理解,以在这些特定图形拓扑结构中综合先前的研究中,以设置这些特定图形拓扑内包含的不确定性。
推理引擎推理引擎是专家系统的关键组成部分,采用逻辑规则来得出信息或基于知识库做出决策。它将fuzzi输入(通过模糊过程获得)映射到规则库,从而为应用电缆规则生成模糊输出。模糊推理引擎遵循一个结构过程,其中包括多个关键步骤。最初,它通过从知识库中识别相关规则并将输入数据与每个规则中指定的条件进行比较来执行规则匹配。一旦确定了相关规则,发动机就会评估每个规则的真实程度,从而确定输入SATIS符合条件的程度。随后,它通过结合其输出以产生连贯的决策或结论来汇总从匹配规则得出的结论。此过程是迭代的,引擎不断应用规则并更新知识库,直到实现解决方案或不适用其他规则为止。此系统ATIC方法使模糊推理引擎可以处理
摘要:在本研究中,我们研究了一种具有逆威布尔分布的双重犹豫模糊集理论方法。用于生产系统/设备的数据/信息可能存在不确定性,这是一个非常常见的问题。双重犹豫模糊集 (DHFS) 在降低此类不确定性的有效性方面起着重要作用。DHFS 是一种有用的替代方法,可以处理专家无法提供满意或拒绝的单一选择的情况。DHFS 是犹豫模糊集或直觉模糊集或模糊集的超集。在本研究中,我们提出了一种使用 DHFS 以及逆威布尔分布 (IWD) 的方法。借助 IWD,很容易对各个级别的系统故障率进行建模,这在可靠性案例中很常见。模糊IWD用于获得系统在寿命期间发生故障的模糊可靠性。基于𝛼-cut,引入了一种DHFS方法。DHFS克服了传统方法得到的结果,因为它优于犹豫模糊集理论,因为它包括单个案例的多重分级/选择。通过给出数值示例验证了该方法的优势和重要性。
摘要 - 为了在加密数据上提供访问控制,基于属性的加密(ABE)使用一组属性定义了每个用户。基于模糊身份的加密(FIBE)是ABE的变体,可为用户提供阈值访问结构。为了解决未来量子计算机构成的潜在威胁,本文提出了基于晶格的量子模糊ibe方案。但是,当前基于晶格的ABE计划面临与计算复杂性以及密文和键的长度有关的挑战。本文旨在通过在加密阶段降低关键长度和计算复杂性来提高现有模糊IBE方案的性能。虽然我们的方案中未使用负面属性,但我们在选择性安全模型中以错误(LWE)硬性问题假设证明其安全性。这些改进对安倍领域具有重要意义。
作者:M Dunn Cavelty · 2022 · 被引用 6 次 — 在政治竞争的背景下,网络行动缺乏作为获得持久政治或军事优势的独立工具的战略效用。在...