DAC8811 是单通道电流输出、16 位数模转换器 (DAC)。图 18 所示的架构是一种 R-2R 梯形配置,其中三个 MSB 分段。梯形的每个 2R 支路都可以切换到 GND 或 I OUT 端子。通过使用外部 I/V 转换器运算放大器,DAC 的 I OUT 端子保持在虚拟 GND 电位。R-2R 梯形连接到外部参考输入 V REF,该输入决定 DAC 满量程电流。R-2R 梯形对外部参考呈现 5k Ω ±25% 的代码独立负载阻抗。外部参考电压可以在 -15 V 至 15 V 的范围内变化,从而提供双极 I OUT 电流操作。通过使用外部 I/V 转换器和 DAC8811 R FB 电阻器,可以生成 -V REF 至 V REF 的输出电压范围。
DAC8811 是一款单通道电流输出、16 位数模转换器 (DAC)。其架构如图 18 所示,是一种 R-2R 梯形配置,其中三个 MSB 分段。梯形的每个 2R 支路均可切换到 GND 或 I OUT 端子。通过使用外部 I/V 转换器运算放大器,DAC 的 I OUT 端子保持在虚拟 GND 电位。R-2R 梯形连接到外部参考输入 V REF,该输入决定 DAC 满量程电流。R-2R 梯形为 5k Ω ±25% 的外部参考提供与代码无关的负载阻抗。外部参考电压可在 -15 V 至 15 V 范围内变化,从而提供双极 I OUT 电流操作。通过使用外部 I/V 转换器和 DAC8811 R FB 电阻器,可以生成 -V REF 至 V REF 的输出电压范围。
DAC8811 是一款单通道电流输出、16 位数模转换器 (DAC)。其架构如图 18 所示,是一种 R-2R 梯形配置,其中三个 MSB 分段。梯形的每个 2R 支路均可切换到 GND 或 I OUT 端子。通过使用外部 I/V 转换器运算放大器,DAC 的 I OUT 端子保持在虚拟 GND 电位。R-2R 梯形连接到外部参考输入 V REF,该输入决定 DAC 满量程电流。R-2R 梯形为 5k Ω ±25% 的外部参考提供与代码无关的负载阻抗。外部参考电压可在 -15 V 至 15 V 范围内变化,从而提供双极 I OUT 电流操作。通过使用外部 I/V 转换器和 DAC8811 R FB 电阻器,可以生成 -V REF 至 V REF 的输出电压范围。
电源电压(V DD – GND)7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 参考输入电压范围,V ID GND – 0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,T A :TLC5620C 0 ° C 至 70 ° C . . . . . . . . . . . . . . . . . . . . TLC5620I –40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . 存储温度范围,T stg –50 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . 距外壳 1.6 毫米 (1/16 英寸) 处的引线温度 10 秒内为 260 ° C . . . . . . . . . . . . ....... ....... ....... ....... .......
I. 引言基于有机薄膜晶体管 (OTFT) 的集成电路近年来呈现出快速发展势头,向着更高集成度和更高性能发展。与无机晶体管相比,OTFT 因其成本低、温度低、制造速度快,尤其是与机械柔性和轻质聚合物基板的兼容性而前景看好 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,如电子纸和平板显示器 [2]。此外,近期 OTFT 的低压工作能力为集成大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,如射频识别 (RFID) 标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
I. 引言基于有机薄膜晶体管 (OTFT) 的集成电路近年来呈现出快速发展势头,向着更高集成度和更高性能发展。与无机晶体管相比,OTFT 因其成本低、温度低、制造速度快,尤其是与机械柔性和轻质聚合物基板的兼容性而前景看好 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,如电子纸和平板显示器 [2]。此外,近期 OTFT 的低压工作能力为集成大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,如射频识别 (RFID) 标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
I. 引言基于有机薄膜晶体管(OTFT)的集成电路最近显示出向更高集成度和更好性能的快速发展。与无机晶体管相比,OTFT 因其成本低、温度低、可快速制造,尤其是与机械柔性和轻质聚合物基板的兼容性而备受期待 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,例如电子纸和平板显示器 [2]。此外,最近的 OTFT 的低压操作能力为集成结合大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,例如射频识别(RFID)标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
I. 引言基于有机薄膜晶体管 (OTFT) 的集成电路近年来呈现出快速发展势头,向着更高集成度和更高性能发展。与无机晶体管相比,OTFT 因其成本低、温度低、制造速度快,尤其是与机械柔性和轻质聚合物基板的兼容性而前景看好 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,如电子纸和平板显示器 [2]。此外,近期 OTFT 的低压工作能力为集成大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,如射频识别 (RFID) 标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
I. 引言基于有机薄膜晶体管(OTFT)的集成电路最近显示出向更高集成度和更好性能的快速发展。与无机晶体管相比,OTFT 因其成本低、温度低、可快速制造,尤其是与机械柔性和轻质聚合物基板的兼容性而备受期待 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,例如电子纸和平板显示器 [2]。此外,最近的 OTFT 的低压操作能力为集成结合大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,例如射频识别(RFID)标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
模拟混频器由键控信号控制,以在视频 DAC 的输出和模拟 RGB 输入之间切换。模拟 RGB 输入需要以直流耦合的方式与模拟混频器接口,而且这些 RGB 输入仅限于没有同步电平基座的 RGB 信号。可以通过设置 I 2 C 总线位 KEN = 1 来启用键控控制。可以生成两种键控:一种是外部键(当 KMOD[2:0] 全部为逻辑 0 时来自 EXTKEY 引脚),另一种是内部像素色键(当 KMOD[2:0] 不全部为逻辑 0 时)通过将输入像素数据与内部 I 2 C 总线寄存器值 KD[7:0] 进行比较而生成。受 KMOD[2:0] 位控制,有 4 种方式可以比较像素数据(见表 8)。