保留所有权利。未经许可不得重复使用。(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权持有者此版本于 2025 年 1 月 25 日发布。;https://doi.org/10.1101/2025.01.23.25321032 doi:medRxiv preprint
保留所有权利。未经许可不得重复使用。永久。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 许可,可以在此版本中显示预印本。版权所有者于 2025 年 1 月 28 日发布此版本。;https://doi.org/10.1101/2025.01.27.25320727 doi: medRxiv preprint
识别膜中的识别元素称为反应区域或检测位点(Anfossi等,2018; Tang等人。2022)。典型的LFB或称为侧向流动装置(LFD),侧向流程测试条(LFTS),侧向流量免疫测定(LFIA)或免疫色谱测定法(ICA)由四个被称为样品垫,结合垫,硝基纤维素垫和吸收垫(Huangent Pad)组成的四个部分。在检测膜上至少存在两个反应位点,其中对选择性抗体进行排列以产生测试和控制线。由于其成本较低,快速检测,非熟练工人使用的适应性,可移植性,多重能力和易于分析程序,因此,LFB引起了很大的兴趣,作为生物学研究和临床诊断的快速检测方法(Liu等人,2018年)。
在过去的几十年中,横向流动检测 (LFA) 已被证明是在临床和环境应用中最成功的即时诊断检测之一。[1–4] 纸基生物传感器具有几个重要优势,例如成本效益、可持续性、免清洗操作性和高度可调性。[5,6] 此外,由于易于使用、速度快、操作简单,LFA 常用于需要大规模测试和定性评估的应用。[2,7,8] 例如,LFA 通常用于在家中诊断怀孕 [9],或者最近用于在药房和移动检测站快速识别 COVID-19 特异性抗体和抗原的存在。[7,10,11] 尽管如此,它们公认的低灵敏度 [12] 和难以解释微弱带状 [13] 仍然阻碍其在需要定量检测目标分析物的具有挑战性的临床应用中的使用。 [14] 为了克服这一限制,研究人员开发了不同的策略来提高 LFA 的灵敏度 [12,15–18] 并实现现场定量分析。[19–21] 然而,这些方法仍然大多局限于学术实验室,因为它们很复杂,而且成本可能很高,会影响 LFA 在现实环境中的可负担性和可用性。[22] 因此,迫切需要简单且经济有效的策略来克服 LFA 的上述局限性,使其能够在广泛的临床场景中实施。目前,大多数 LFA 都采用比色标记(例如金纳米粒子和聚苯乙烯珠)[23,24],可以方便地进行肉眼或基于智能手机的检测。前者仍然是 LFA 的首选检测模式,因为它不需要设备并且具有成本效益,因此非常适合资源有限的环境。 [25] 相反,后一种方法正在兴起(这要归功于智能手机的普及),并且倾向于提高测试的可重复性(即消除了肉眼检测的主观部分)。 [26–30] 然而,在这两种情况下,使用比色标签都会将 LFA 的读数限制为单色信号的识别/测量。不幸的是,这可能会产生不确定的情况,因为微弱的条带的存在可能不
裂谷热 (RVF) 是一种人畜共患的蚊媒布尼亚病毒性疾病,与反刍动物的高流产率、新生儿死亡、胎儿畸形以及人类的轻度至重度疾病有关。疫苗接种显著降低了疫情期间母羊的流产率和新生羔羊的死亡率,并在牛中诱导了免疫力。灭活 RVF 疫苗的评估需要体内和体外技术。本研究旨在通过参考血清评估横向流动装置 (LFD) 与血清中和试验 (SNT) 的敏感性,以确定接种灭活 RVF 疫苗的绵羊的体液免疫反应。在三组绵羊中接种了三批灭活 RVF 疫苗。然后每周采集它们的血清样本,并进行 SNT 和 LFD 检测。结果发现,在1:128稀释度的血清中LFD的灵敏度为95%,而接种后第四周进行的SNT显示抗体滴度分别为32、64和32。而疫苗批次1、2和3在1:32、1:128和1:64稀释度时LFD的灵敏度为95%。这些结果表明,LFD可用于检测接种绵羊对裂谷热病毒灭活疫苗的免疫应答,并且将来可以将其改进为定量检测。关键词:横向流动装置,裂谷热病毒,RVFV灭活疫苗,疫苗评价