根据图中所示的数据分析4,计算模式tm 0的横向磁场,用于周围的介质折射率等于1在波长450、510、570和630 nm处,涵盖了LMR位于不同中间层厚度值的范围:0,150,150,150,150,350,350,350,550,700,700,850和1000 nm nms1)。对于模拟,我们使用了带有准2D版本的FimMave软件中实现的有限差异方法(FDM)。,由于它在接口上是连续的,因此比电场更容易解释,因此我们专注于横向磁场的分析。
本研究文章涉及激活能量和霍尔电流对电动传导的纳米流动的影响,探索了连续拉伸的表面,并探索了扩散热和热扩散的影响。带有小雷诺数假设的横向磁场是垂直实现的。适当的相似性转换被用来将管理部分微分方程转换为非线性的普通微分方程。在射击方法的帮助下计算无量纲速度,温度和纳米颗粒浓度的数值溶液。通过图讨论了每个激活能量,霍尔电流参数,布朗运动参数,嗜热参数和磁参数对速度,浓度和温度的影响。沿X和z指导,局部努塞尔数和舍伍德数的皮肤摩擦系数是数值计算的,以查看新兴参数的内部行为。
摘要。我们解决了平面波在由DC横向磁场控制的铁氧体1D磁磁晶体上散射的问题。基于Floquet-Bloch理论的混合边界条件的山山方程溶液以分析形式获得。明确发现色散方程及其根。根据铁氧体层的材料参数,对结构的分散性质进行分析。确定具有有限周期数量的陀螺仪的传输和反射系数。考虑了两个特征情况:旋转层有效渗透性的正值和负值。在晶体时期确定电磁场组件的空间分布的表达。结果提供了对具有控制旋转元素的多层介质中电磁波传播行为的更深入的理解。此外,获得的分析表达式简化了这种复杂介质中波过程的分析。
在横向磁场 (TF) 存在下,二聚化自旋 1/2 XX 蜂窝模型的基态相图是已知的。在没有磁场的情况下,已经鉴定出两个量子相,即 Néel 相和二聚相。此外,通过施加磁场还会出现倾斜 Néel 相和顺磁 (PM) 相。在本文中,我们利用两种强大的数值精确技术,Lanczos 精确对角化和密度矩阵重正化群 (DMRG) 方法,通过关注最近邻自旋之间的量子关联、并发和量子不和谐 (QD) 来研究该模型。我们表明,量子关联可以捕捉基态相图整个范围内量子临界点的位置,这与以前的结果一致。虽然并发和 QD 是短程的,但它们对长程临界关联具有重要意义。此外,我们还讨论了从饱和场周围的纠缠场开始的“磁纠缠”行为。
在存在横向磁场(TF)的情况下,二聚旋转1/2 XX蜂窝模型的基态相图已知。在没有磁场的情况下,已经确定了两个量子相,即N´eel和二聚相。也通过施加磁场来出现倾斜的N´eel和顺磁性(PM)阶段。在本文中,使用两种互补的数值精确技术,兰科斯精确对角线化和密度矩阵恢复归一化组(DMRG)方法,我们通过关注量子相关性,同意和量子不和谐(QD)来研究此模型。我们表明,量子相关性可以捕获与先前结果一致的基态相图范围内量子临界点的位置。尽管同意和QD是短期的,但有关长期临界相关性的信息。此外,我们还解决了一种“磁性”行为,该行为是从饱和场周围纠缠的场开始的。
半导体量子点中的旋转是有希望的局部量子记忆,可以产生偏振化编码的光子簇状态,如开创性的Lindner和Rudolph方案[1]。然而,利用光学转变的极化程度受到共鸣激发方案的阻碍,这些方案被广泛用于获得高光子不明显。在这里我们表明,声子辅助激发(一种保持高度可区分性的方案)也允许完全利用极化的选择性光学转变来初始化并测量单个自旋状态。我们在低横向磁场中访问孔自旋系统的相干性,并在激发态的辐射发射过程或量子点基态下直接监测自旋倾向。我们报告的旋转状态检测功能为94。7±0。由光学选择规则和25±5 ns孔旋转相干时间授予的2%,证明了该方案和系统具有以十二个光子为单位的线性簇状态的潜力。
1。多壁碳纳米管对AL-12%Si合金,Anuruddha Majumder,Dipankar Chatterjee,Sambhunath Nandy的固化过程的影响(Today Communications,Accpeted,2023年)。2。在共晶的Al-Si液体中的主要硅沉淀上进行固体转化,Anuruddha Majumder,Dipankar Chatterjee,Sambhunath Nandy(材料科学与工程学中的建模和模拟,第1卷31,pp。075004,2023)。3。混合对流流经过反向双线,例如旋转的侧面圆柱体,NVV Krishna Chaitanya,Dipankar Chatterjee(热传递工程,被接受,2023年)。4。交叉热浮力在低雷诺数下并排圆柱体周围的流动过渡,Krishna Chaitanya NVV,Dipankar Chatterjee,Bittagopal Mondal(热分析和热量分析杂志,卷,148,pp。2933,2023)。5。横向磁场对抑制虚张声器物体上的纳米流体流量不稳定性的功效571,pp。170582,2023)。
摘要:我们报告了如何使用对全尼克磁性磁性晶体(MPC)的斜向磁磁光(TMOKE)增强的空间来解决空间解析横向磁光kerr效应(TMOKE)增强的观察。首先,MPC中表面等离子体的激发导致15.3μm(18λ)GH偏移。然后,在存在横向磁场的情况下,在实验中,由GH偏移引起的反射光的侧向空间强度分布的调制[Tmoke(x)]达到4.7%。与MPC中常规TMOKE测量值相比,空间解析的Tmoke(X)值高几倍。在GH偏移下,空间分辨的磁光效应的概念可以进一步扩展到其他磁极纳米版本,以增强磁光效应,传感和光调制应用。关键字:鹅 - ha nchen换移,磁性粒细胞,磁性晶体,表面等离子体,横向磁光kerr效应■简介
1 简介:二次量子化、相互作用电子、哈伯德模型及其派生模型 1 横向磁场中的量子伊辛模型:通过 Jordan 1 Wigner、Fourier 和 Bogoliubov 变换的精确解。量子相变和临界性。有序与无序。对偶性。激发和畴壁。 1 纠缠熵:面积定律和对数发散。 3 半整数自旋链:海森堡反铁磁体、Lieb-Schultz-Mattis 1 定理、有序与无序、Goldstone 玻色子、Mermin-Wagner 定理、通过坐标 Bethe 假设的精确解。 4 整数自旋链:Haldane 猜想、Affleck-Kennedy-Tasaki-Lieb 模型、MPS(矩阵积态)和张量网络简介。无间隙边缘模式和对称保护拓扑序。 5 自由费米子系统的拓扑分类:拓扑绝缘体和超导体的周期表,Su-Schriefer-Heeger模型和Kitaev的量子线:拓扑简并和马约拉纳边缘模式。 6 高维自旋模型,自旋液体,规范理论和Kitaev的环面代码模型,拓扑序和任意子 还将有一个小组项目,可以选择为文献综述(例如量子霍尔效应,Levin-Wen弦网络模型,拓扑绝缘体,
将曲面上扁平线束的最小浸入与临界特征值度量联系起来 Santiago Adams 导师:Antoine Song 在现有文献中,第一个特征值在曲面上临界的度量与该曲面在任意维球面中的最小浸入之间存在着密切的联系。我们知道,对于具有临界度量的曲面,存在一组拉普拉斯算子的特征函数,它们定义了进入球面的最小浸入。我们旨在使用局部参数将该理论扩展到扁平线束特征截面的情况。也就是说,给定一个第一个特征值在线束上临界的度量,我们旨在使用其特征截面的升力来定义其通用覆盖在球面中的最小浸入,并更好地理解是否存在原始曲面进入球面的最小浸入。伊辛铁磁体在经典和量子极限下的热力学性质 Sophia Adams 导师:Thomas Rosenbaum 和 Daniel Silevitch 该项目旨在探测模型伊辛铁磁体 LiHoF 4 在经典和量子相变中的热力学性质。经典跃迁发生在临界温度 1.53 K 和零磁场下,而量子跃迁发生在零温度极限下 50 kOe 量级的临界横向磁场下。我们将使用比热数据来比较两个跃迁的临界指数及其之间的交叉。 一种使用基于分类器的生成器生成和预筛选蛋白质以确定结合亲和力的新方法 Victoria Adams 导师:Matt Thomson 和 Alec Lourenco 由于当前方法筛选蛋白质结合功效的速度和规模,测试新的工程结合蛋白设计非常无效。定量而不是定性筛选新蛋白质将进一步提高效率。 Thomson 实验室开发了一种高通量筛选方法,用于收集有关结合蛋白的信息并实现蛋白质设计。在我的项目中,我致力于开发一种使用蛋白质语言模型预筛选生成蛋白质的新方法。应用现有的蛋白质大型语言模型 (pLLM),例如进化尺度模型 (ESM) 和 AlphaFold 2 & 3,我正在研究一种生成蛋白质然后预筛选其结合亲和力的方法。我还有机会学习如何使用实验室的高通量筛选分析来实验性地测试蛋白质设计。到目前为止,我还没有完全开发的方法/模型,但我有一个需要微调的基本分类器,并且需要一个仍需要指定最佳参数的生成器。我希望能够完成这些编程改进,并可能能够在夏季结束前通过应用高通量筛选来测试它们。来自路径积分的时间类纠缠 Zofia Adamska 导师:John Preskill 和 Alexey Milekhin 大多数量子力学形式主义都从不同的角度来看待空间和时间,这从相对论物理学的角度来看似乎是不自然的。为了解决这种不对称性,我们提出了一种时空密度矩阵的新定义,该定义源自路径积分方法,以更好地分析时空中的量子信息。我们的动机基于相对论量子场论中的观察,其中该密度矩阵的 Renyi 熵与通过从空间类分离到时间类分离的解析延续得出的结果完全一致。我们演示了如何使用这个密度矩阵来限制时空相关函数,并表明我们的界限比其他方法更紧并且遵循 Lieb-Robinson 界限。此外,我们在量子计算机上测试了这个时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了热化的新探针,并且可以为选择用于量子多体系统时间演化的有效张量网络假设提供启示。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使其成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞转录、翻译和复制系统 (PURE Rep)。此外,设计为在脂质体内由 PhiX174 基因触发时发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们目前的工作包括设计一种具有高效性的开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制