第 730 机动活动委员会 (MAC) AAFES 美食广场/特许经营店 AAFES 主店 非裔美国人遗产协会 空军舞会委员会 空军中士协会 (AFSA) Akira Shoji 美国军队网络协会 (AFNA) As-Sami 寺 #225 曼谷快运保龄球中心 美国童子军第 45 部队买家俱乐部 Canbee Cheosong 日本土木工程师协会 社区团队活动委员会 (CTAC) 社区中心审计长协会 CPTS WSA 助推俱乐部 酷卫士协会 美元和日元 (DFAS) DTRA 侦察活动委员会 尘卷风协会 E/O 俱乐部 鹰空运者 简易厨房 菲律宾裔美国人 (Fil-Am) 组织 友谊行动委员会 趣味食品 平家蟹助推俱乐部 医院协会 东道国就业 日本福利协会 Johyama 关东平原消防员协会 关东平原特殊奥林匹克委员会 KCs 餐饮 Kiraratei 拉丁美洲协会 维护运营协会 马里亚纳群岛协会 现代工艺品中野十间 北关东防卫局 OL-CCC 热心行动 杰出支援协会 Parati Peony 精密制导音乐家 浪人战士 坂口道严 武士狐狸助推俱乐部 永远忠诚协会 老师 夏威夷之子 SUMO - 第 374 届 MXS 相扑理事会 横田 T 项目 田口酒天 Tanoshihi 俱乐部 时间食品服务 Upsilicon Lambda Lambda of Omega Psi Phis 兄弟会 Vivace 表演艺术 Yakidaisho Takumiya YBSA - 横滨棒球/垒球协会 横田 5/6 路线 横田酋长集团 横田教练协会 横田一等士官理事会 横田高中 PTO 横田女战士 横田 Striders 横田 Top III 横田排球俱乐部 横田勇士队 篮球 横田第一四人理事会 Yuuko 俱乐部
第 730 机动活动委员会 (MAC) AAFES 航空配餐 AAFES 美食广场/特许经营店 AAFES 主店 非裔美国人遗产协会 空军舞会委员会 空军中士协会 (AFSA) Akira Shoji 美国军队网络协会 (AFNA) As-Sami 寺 #225 曼谷快运保龄球中心 美国童子军第 45 部队买家俱乐部 Canbee Cheosong 日本土木工程师协会 通讯团队活动委员会 (CTAC) 社区中心审计长协会 CPTS WSA 助推俱乐部 酷卫士协会 美元和日元 (DFAS) DTRA 侦察活动委员会 尘卷风协会 E/O 俱乐部 鹰空运者 简易厨房 菲律宾裔美国人 (Fil-Am) 组织 友谊行动委员会 趣味食品 平家蟹助推俱乐部 医院协会 东道国就业 日本福利协会 Johyama 关东平原消防员协会 关东平原特殊奥林匹克委员会 KCs 餐饮 Kiraratei 拉丁美洲协会 维护运营协会 马里亚纳群岛协会 现代工艺 中野十研 北关东防卫局 OL-CCC 热心行动 杰出支援协会 Parati Peony 精密制导音乐家 浪人战士 坂口道严 武士狐狸助推俱乐部 永远忠诚协会 老师 夏威夷之子 SUMO - 第 374 届 MXS 相扑理事会 横田 T 项目 田口 Saketen Tanoshihi 俱乐部 时间食品服务 Upsilicon Lambda Lambda of Omega Psi Phis 兄弟会 Vivace 表演艺术 Yakidaisho Takumiya YBSA - 横滨棒球/垒球协会 横田 5/6 路线 横田酋长集团 横田教练协会 横田一等士官理事会 横田高中 PTO 横田女战士 横田 Striders 横田 Top III 横田排球俱乐部 横田勇士队 篮球 横田第一四人理事会 Yuuko 俱乐部
第 730 机动活动委员会 (MAC) AAFES 美食广场/特许经营店 AAFES 主店 非裔美国人遗产协会 空军舞会委员会 空军中士协会 (AFSA) Akira Shoji 美国军队网络协会 (AFNA) As-Sami 寺 #225 曼谷快运保龄球中心 美国童子军第 45 部队买家俱乐部 Canbee Cheosong 日本土木工程师协会 通讯团队活动委员会 (CTAC) 社区中心审计长协会 CPTS WSA 助推俱乐部 酷卫士协会 美元和日元 (DFAS) DTRA 侦察活动委员会 尘卷风协会 E/O 俱乐部 鹰空运者 简易厨房 菲律宾裔美国人 (Fil-Am) 组织 友谊行动委员会 趣味食品 平家蟹助推俱乐部 医院协会 东道国就业 日本福利协会 Johyama 关东平原消防员协会 关东平原特殊奥林匹克委员会 KCs 餐饮 Kiraratei 拉丁美洲协会 维护运营协会 马里亚纳群岛协会 现代CRAFTERY 中野十拳 北关东防卫局 OL-CCC 热心行动 杰出支援协会 Parati Peony 精密制导音乐家 浪人战士 Sakazuki Dogan 武士狐狸助推俱乐部 永远忠诚协会 Senseis (The) Sons of Hawaii SUMO - 第 374 届 MXS 相扑理事会 横田 T 项目 田口 Saketen Tanoshihi 俱乐部 时间食品服务 Upsilicon Lambda Lambda of Omega Psi Phis 兄弟会 Vivace 表演艺术 Yakidaisho Takumiya YBSA - 横滨棒球/垒球协会 横田 5/6 路线 横田酋长集团 横田教练协会 (The) 横田一等士官理事会 横田高中 PTO 横田女战士 横田 Striders 横田 Top III 横田排球俱乐部 横田勇士队 篮球 横田第一四人理事会 Yuuko 俱乐部
姓名 领域 组织 Byun, Ilkwon Cryo-Semi, QIP-QC 韩国首尔国立大学 Cuthbert, Michael Cryo, QIP 英国国家量子计算中心 DeBenedictis, Erik QIP-QC Zettaflops,美国 Delfanazari, Kaveh QIP-QC 英国格拉斯哥大学 Fagaly, Robert L. SCE-App Tristan Technologies(已退休),美国 Fagas, Giorgios QIP 爱尔兰廷德尔国家研究所 Febvre, Pascal SCE-Fab 法国萨瓦大学勃朗峰分校 Filippov, Timur SCE-Logic HYPRES,美国 Fourie, Coenrad SCE-EDA 南非斯泰伦博斯大学 Frank, Michael SCE-Logic, -Roadmap 美国桑迪亚国家实验室 Gupta, Deep SCE, Cryo-Semi SEACORP,美国 Herr, Anna SCE IMEC,比利时 Herr, Quentin SCE IMEC,美国Holmes, D. Scott [主席] SCE Booz Allen Hamilton,美国 Humble, Travis QIP-QC 橡树岭国家实验室,美国 Leese de Escobar, Anna SCE-App, -Bench Technology Vector Inc.,美国 Min, Dongmoon Cryo-Semi,QIP-QC 首尔国立大学,韩国 Mueller, Peter QIP-QC IBM 苏黎世,瑞士 Mukhanov, Oleg QIP-QC, SCE-Logic SEEQC,美国 Nemoto, Kae QIP 国家信息研究所 (NII),日本 Papa Rao, Satyavolu SCE-Fab,QIP 纽约州立大学理工学院,美国 Pelucchi, Emanuele QIP-QC 廷德尔国家研究所,爱尔兰 Plourde, Britton QIP, SCE 雪城大学,美国 Soloviev, Igor SCE 罗蒙诺索夫莫斯科国立大学,俄罗斯 Tzimpragos, George SCE-Logic, -Metrics 密歇根大学,美国 Van Horn, Andrew QIP-QC 杜克大学美国大学 Weides, Martin SCE, QIP 英国格拉斯哥大学 Yoshikawa, Noboyuki SCE-Logic, -Bench 日本横滨国立大学 You, Lixing SCE 中国科学院上海微系统与信息技术研究所 该团队感谢 Paolo Gargini、An Chen、Elie Track 和 IEEE 超导委员会对开发 CEQIP IFT 的鼓励和支持。我们还要感谢 Linda Wilson 提供的行政帮助和支持。2023 年报告的贡献者包括外部系统连接 (OSC) IFT 的 Carlos Augusto。
◆2024年日本白血病研究基金奖获奖者◆[Ogimura Takashi特别奖] Yasunobu Nagata [Nippon医学院血液学助理教授,助理教授],“克服Bcl-2抑制剂 - 蒸发剂 - 溶性白血病,通过阐明分子麦克乳杆菌的抗抗菌抗菌抗衰变的分子抗衰变。。” [Takaku fumimaro奖] Kazumasa Aoyama [keio大学菲律学院,卫生化学司法部・助理教授]“识别EZH2功能障碍的药物目标骨髓发育异常综合症丧失“在AML理论中使用BCL2抑制剂开发新疗法” [Shimizu Yasunobu奖] Kohichi Kawahara [医学和牙科科学研究生院Kagoshima Univ,分子肿瘤学副教授]“分子肿瘤学的副教授”“ Molecuar the Molecuar the the Pediatrics Lew the Pediatrics Lew the Pate''[信用Saison Award] Yoshio Katayama [Kobe University Hospital,HemaTology ・ Junor副教授]“脂质介体概况老年骨髓及其用于控制骨髓软化疾病的应用。”[IDE Yukiko Award] Yasushige Kamimura [横滨城市大学医疗学院研究生院,干细胞和LMMUNE重新排出]“用于骨髓发育症的新治疗方法,用于脊髓卵形质量的脊髓石质量疾病的脑静脉曲张syudromes bascd。 [特别奖项---临床医学特别奖(无特殊顺序)]高摩·卡米亚(Takahiro Kamiya卢克国际医院儿科部长,参谋长]“用降低综合征的髓样白血病建立了新型风险分层疗法。” [一般研究奖(无特殊顺序)] Genki Yamato [Gunma University医学院,儿科教授,助理教授],“小儿急性髓样白血病中的全基因组DNA DNA甲基拉顿分析”。 Dai Keino [卡纳那川儿童医疗中心,血液学 /肿瘤学系]“ stud y of of of of p p p p p p p p op op op op op of of of of of of of of of cond-代代代酪氨酸激酶抑制剂在治疗儿童的慢性和加速相的奇异性髓样性白血病。”
先进科学技术研究组织,日本横滨 基金会物理学研究中心 (FoPRC),意大利科森扎。 电子邮件:takaaki.mushya@gmail.com 通讯作者详细信息:Takaaki Musha;takaaki.mushya@gmail.com 摘要 已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。本文讨论了通过电重力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它只使用太阳能电池板产生的电能,卫星可以永久绕地球运行并在太阳附近的任何轨道上运行。 关键词:空间推进;卫星;电重力;比菲尔德-布朗效应 介绍 所有航天器都需要一种推进方法。已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。卫星首次发射到预定轨道需要使用常规液体或固体火箭发动机,并具备足够的推进力以克服地球大气层并达到稳定轨道所需的高速度。行星际航天器可能需要这种强大的常规火箭发动机,但也可以依靠功率较小但持续时间较长、ISP 较高的发动机,如离子推进器或霍尔效应推进器。卫星即使进入稳定轨道,也需要可靠的长时间推进方法才能保持功能。即使卫星在轨道上,它也会受到稀薄大气层的阻力和其他力的影响,这些力会随着时间的推移降低轨道。因此,卫星必须能够对其轨道进行微小修正以保持轨道,这称为轨道站保持 [1]。此外,卫星可能需要能够不时从一个轨道转移到另一个轨道 [2],能够保持相对于地球表面、太阳或其他感兴趣的天文物体的特定姿态 [3],并且由于部件故障或其他原因,甚至可能需要以安全和可控的方式脱离轨道。在大多数情况下,当卫星执行轨道调整的推进系统耗尽或无法再产生推进力时,卫星执行其设计任务的能力就结束了,其使用寿命也结束了。目前,卫星通常只使用较小版本的化学火箭发动机或电阻喷射火箭进行推进。有些卫星确实使用电动动量轮进行姿态控制,但由于运动部件的存在,这些动量轮容易发生故障,并且它们可以执行的校正范围有限。最近,卫星开始使用电力推进,例如离子推进器来保持位置并调整轨道,但这种推进器虽然是电力驱动的,他们的供应仍然有限
(CEO) 高级执行副总裁 宫地 真司 (CFO) (CCO) 执行副总裁 仓田 秀之 (CTO) (技术综合本部总经理) 铃木 信之 (电子公司总裁) 高级执行官 粕谷敏郎 (CEO 助理) 竹川义雄 (汽车公司总裁) 小林淳一 (人力资源本部总经理) 村野正 (生命科学公司总裁) 小室宪之 (CEO 助理) Davide Cappellino (建筑玻璃欧美公司总裁) 峰信也 (EHSQ 综合本部总经理) (AGC 横滨技术中心总经理) 粋井达男 (化学品公司总裁) 佐野宏明 (企业规划综合本部总经理) 执行官 杉山达男 (汽车公司总裁助理) Jean-Marc Meunier (汽车公司欧洲地区总裁) (汽车公司技术办公室总经理)上田俊弘 (CEO 助理) 市川淳 (建筑玻璃欧美公司高级副总裁) 高田聪 (CEO 助理) 神谷弘树 (CEO 助理) 荒木尚子 (CEO 助理) 太田胜 (AGC Ceramics Co., Ltd. 总裁) 成岛隆 (汽车公司全球 OEM 管理办公室总经理) 大谷博之 (汽车公司亚洲区总裁) 吉场茂树 (建筑玻璃亚太公司总裁) 横塚俊介 (技术综合本部材料整合实验室总经理) 岩仓诚吾 (采购和物流本部总经理) 上田康之 (化学品公司总裁助理) 堀部义久 (化学品公司基本化学品综合本部总经理) 古田满 (电子公司显示玻璃综合本部总经理) 贝田百合子 (创新技术实验室、技术总体本部总经理) 若槻宏(业务开发本部总经理) 西野二郎(化学公司、高性能化学品总体本部总经理) 玉木一美(企业传播和投资者关系总经理) 成葺功(技术总体本部、生产技术本部总经理) Eddy Sutanto(PT Asahimas Chemical 总裁) 汤山宇山(AGC 集团中国首席代表) 久保隆(电子公司、电子材料总体本部总经理) 望月逸夫(企业规划总体本部、战略和规划本部总经理)
通过软件和云服务业务,为响应汽车的智能化和与云东京相关的行动性进化提供价值,2024年11月1日 - 日立·阿斯特莫(Hitachi Astemo),有限公司(以后“ astemo”)建立了Astemo Cypremos,Ltd。(以下是“ cypremos and peat efter” Companion and Apection and peating Companion and the以下是2024年的新公司,用于SDV *1并实现新的移动服务。Cypremos将通过改善与云相关的汽车智能和移动性演变来提供价值。*1:当今汽车行业的软件定义的车辆,由于自主驾驶技术的发展,连接的汽车的传播以及电气化的加速,车辆控制和功能越来越依赖于软件。随着软件的重要性急剧增加,软件开发变得越来越复杂和复杂。因此,提高工程效率和速度已成为整个行业的紧迫问题。ASTEMO作为全球大型供应商一直在车内域中提供切实的价值,其中包括软件和E/E *2体系结构,有助于实现高级车辆功能,例如自动驾驶。为了进一步加强我们对车内领域的反应并迅速响应当前的市场需求,Astemo建立了一家新公司,该公司将领导外部域名的数字工程革命。*2电气/电子作为层的0.5供应商,其广泛的系统建议功能,Astemo将利用云和通信技术通过IOV *3平台来支持SDV。该平台包括外部车域,该域是超出车辆以外的技术,可扩大功能并提高性能。*3 Cypremos的车辆Internet将通过结合最先进的数字技术,数据利用和AI技术来实现工程领域的创新。它还将利用Astemo的汽车制造知识和专业知识,这是通过与各种汽车制造商合作开发汽车内硬件和ECUS *4和AD/ADAS *5的软件来培养的。此外,Cypremos将招募高度专业化的全球人员,并与汽车制造商和全球发展合作伙伴一起,将面临在高级移动服务领域创造价值的挑战,以领导SDV时代的范式转变。*4电子控制单元 *5通过IOV平台自动驾驶/高级驾驶员援助系统,该平台结合了车内和车外域,ASTEMO和CYPREMOS将提供SDV时代所需的价值为0.5 Tier 0.5供应商,并旨在开发超越SDV和可持续增长的行动性服务的业务。,我们通过提供世界领先的先进的流动解决方案为实现可持续社会的实现和繁荣的生活做出了贡献。此外,我们旨在通过流动性来提供安全和保障,并使世界各地的人们享受更多自由和繁荣的生活。在2025年,这家新公司计划将其运营基地从横滨将其转移到东京Shibuya的Shibuya Sakura舞台,这是日本IT技术和人力资源的中心。
基于 FPGA 的安全相关 PRM 系统的资质认证 Tadashi Miyazaki、Naotaka Oda、Yasushi Goto、Toshifumi Hayashi 东芝公司,日本横滨 摘要。东芝开发了基于不可重写 (NRW) 现场可编程门阵列 (FPGA) 的安全相关仪器和控制 (I&C) 系统。考虑到应用于安全相关系统,东芝基于 FPGA 的系统采用了一旦制造后就无法更改的非易失性和不可重写的 FPGA。FPGA 是一种仅由基本逻辑电路组成的设备,FPGA 执行通过连接 FPGA 内部的基本逻辑电路配置的定义处理。基于 FPGA 的系统解决了由模拟电路操作的传统系统(基于模拟的系统)和由中央处理单元操作的系统(基于 CPU 的系统)中存在的问题。应用 FPGA 的优势在于可以保持产品的长寿命供应、提高可测试性 (验证) 并减少模拟系统中可能出现的漂移。东芝此次开发的系统是功率范围中子监测器 (PRM)。东芝计划今后将这种开发流程应用到其他安全相关系统(如 RPS),从而扩大基于 FPGA 的技术的应用范围。东芝为基于 NRW-FPGA 的安全相关 I&C 系统开发了一种特殊的设计流程。该设计流程解决了多年来关于核安全应用数字系统的可测试性问题。因此,东芝基于 NRW-FPGA 的安全相关 I&C 系统具有成为核安全应用数字系统标准的巨大优势。1. 引言核电站的 I&C 系统最初是基于模拟的。1980 和 90 年代开发了基于计算机的 I&C 系统。尤其是先进沸水反应堆 (ABWR) 中使用的系统,是世界上第一个沸水反应堆全数字化仪控系统。与老式模拟系统相比,计算机仪控系统具有许多优势。计算机仪控系统没有漂移问题,而漂移问题曾困扰过模拟系统的维护人员。计算机仪控系统具有许多先进功能,包括一些自动功能,这是任何模拟系统都无法提供的。计算机仪控系统的这些先进功能一直有助于核电站的安全运行。由于计算机仪控系统与安全相关,因此法规和标准要求它们进行验证和确认。然而,丰富的功能和由此产生的软件复杂性使得计算机仪控系统的验证和确认既耗时又昂贵。此外,计算机系统使用半导体工业生产的微处理器,与核工业相比,其产品生命周期较短。大多数微处理器可能在几年内就过时了。FPGA 于 1990 年在半导体行业中得到发展。与普通半导体器件或专用集成电路 (ASIC) 不同,FPGA 中的电路可以在从半导体工厂发货后确定或编程。因此,它适用于核工业等小批量应用。由于 FPGA 是一种半导体器件,其功能由嵌入在器件中的电路决定,因此 FPGA 无需操作系统 (OS) 或基于计算机的 I&C 系统所必需的复杂应用程序即可运行。一般而言,基于 FPGA 的 I&C 系统比基于计算机的 I&C 系统更简单,这使得 V&V 工作更简单且更经济实惠。
基于 FPGA 的安全相关 PRM 系统的认证 Tadashi Miyazaki、Naotaka Oda、Yasushi Goto、Toshifumi Hayashi 东芝公司,日本横滨 摘要。东芝开发了基于不可重写 (NRW) 现场可编程门阵列 (FPGA) 的安全相关仪器和控制 (I&C) 系统。考虑到应用于安全相关系统,东芝基于 FPGA 的系统采用了一旦制造就无法更改的非易失性和不可重写的 FPGA。FPGA 是一种仅由基本逻辑电路组成的设备,FPGA 执行通过连接 FPGA 内部的基本逻辑电路配置的定义处理。基于 FPGA 的系统解决了传统模拟电路系统(模拟系统)和中央处理器系统(CPU 系统)中存在的问题。应用 FPGA 的优势在于可以保持产品的长寿命供应、提高可测试性(验证)以及减少模拟系统中可能出现的漂移。东芝此次开发的系统是功率范围中子监测器 (PRM)。东芝计划从现在开始将这一开发流程应用于其他安全相关系统(如 RPS),从而扩大基于 FPGA 的技术的应用范围。东芝为基于 NRW-FPGA 的安全相关 I&C 系统开发了一种特殊的设计流程。该设计流程解决了多年来关于核安全应用数字系统可测试性的问题。因此,基于东芝 NRW-FPGA 的安全相关 I&C 系统具有成为核安全应用数字系统标准的巨大优势。1.简介 核电站 I&C 系统最初是基于模拟的。1980 和 90 年代开发了基于计算机的 I&C 系统。特别是,先进沸水反应堆 (ABWR) 中使用的系统是世界上第一个用于沸水反应堆的全数字 I&C 系统。与旧的基于模拟的系统相比,基于计算机的 I&C 系统具有许多优势。基于计算机的 I&C 系统没有漂移问题,这些问题困扰了基于模拟的系统维护人员。基于计算机的 I&C 系统具有许多高级功能,包括一些自动功能,这是任何基于模拟的系统都无法提供的。基于计算机的 I&C 系统的这些高级功能一直有助于核电站的安全运行。由于基于计算机的 I&C 系统与安全相关,因此它们需要遵守法规和标准的 V&V。然而,丰富的功能和由此产生的软件复杂性使基于计算机的 I&C 系统的 V&V 既耗时又昂贵。此外,基于计算机的系统使用半导体工业生产的微处理器,与核工业相比,其产品生命周期更短。大多数微处理器可能在几年内就过时了。FPGA 在半导体工业中发展到 1990 年。与普通半导体器件或专用集成电路 (ASIC) 不同,FPGA 中的电路可以在从半导体代工厂发货后确定或编程。因此,它适用于核工业等小批量应用。因为 FPGA 是一种半导体器件,其功能由嵌入在器件中的电路决定,所以 FPGA 不需要基于计算机的 I&C 系统所必需的操作系统 (OS) 或复杂应用程序即可运行。一般而言,基于 FPGA 的 I&C 系统比基于计算机的 I&C 系统更简单,这使得 V&V 工作更简单且更经济实惠。