信息处理的热力学能量成本是一个被广泛研究的课题,既有其基本方面,也有其潜在的应用[1-9]。该能量成本有一个下限,由 Landauer 原理确定[10]:在温度 T 下,从存储器中擦除一位信息至少需要 k BT ln 2 的功,其中 k B 为玻尔兹曼常数。这是很小的能量,在室温(300 K)下仅为 ∼ 3 × 10 − 21 J,但它是一个通用的下限,与所用存储器的具体类型无关,并且与广义 Jarzynski 等式 [11] 相关。已在多个经典实验中测量了兰道尔边界 (LB),这些实验使用了光镊 [ 12 , 13 ]、电路 [ 14 ]、反馈阱 [ 15 – 17 ] 和纳米磁体 [ 18 , 19 ],以及捕获超冷离子 [ 20 ] 和分子纳米磁体 [ 21 ] 的量子实验。在准静态擦除协议中可以渐近地达到 LB,其持续时间比上述用作一位存储器的系统的弛豫时间长得多。实际上,当在短时间内执行擦除时,可以使用最优协议最小化此类过程所需的能量,这些协议已经过计算 [ 22 – 27 ] 并用于过阻尼系统 [ 17 ]。更快接近渐近 LB 的另一个策略当然是减少弛豫时间。然而,对于非常快的协议,人们可能想知道机械(电子)系统中的惯性(感应)项是否会影响其可靠性和能量成本。
表 1 最大额定值 符号 值 单位 断态重复峰值电压 V DRM 1500 V 反向重复峰值电压 V RRM -10 V 断态电压变化率抗扰度(VD =1500V) dv/dt 1000 V/µSec 峰值非重复浪涌电流(1/2 正弦波脉冲持续时间 =/<300nSec) I TSM 4000 A 峰值重复浪涌电流(1/2 正弦波脉冲持续时间 =/<300nSec) I TRM 3500 A 电流变化率 dI/dt 100 kA/µSec 临界电容放电事件积分(欠阻尼 LCR 电路) I 2 t CRITICAL TBD A 2 秒重复电容放电事件积分(欠阻尼 LCR 电路) I 2 t REPETITIVE 2A 2秒连续栅极-阴极反向电压V GKS -9 V正向峰值栅极电流(10
R de − f ( x ) dx。首先,我们使用欠阻尼朗之万扩散来开发量子算法,该算法的查询复杂度(就条件数 κ 和维度 d 而言)与使用梯度(一阶)查询的类似经典算法相匹配,即使量子算法仅使用评估(零阶)查询。对于估计规范化常数,这些算法还实现了乘法误差 ϵ 的二次加速。其次,我们开发了量子 Metropolis 调整的朗之万算法,查询复杂度分别为 e O ( κ 1 / 2 d ) 和 e O ( κ 1 / 2 d 3 / 2 / ϵ ),分别用于对数凹采样和规范化常数估计,通过利用蒙特卡洛方法和量子行走的量子类似物,与最著名的经典算法相比,在 κ、d、ϵ 方面实现了多项式加速。我们还证明了估计标准常数的 1 /ϵ 1 − o (1) 量子下限,这意味着我们的量子算法在 ϵ 方面接近最优。
1. Aiache Youssef。通过相互作用的量子比特探测器进行温度量子传感 2. Aimet Stefan。在量子多体领域实验探测兰道尔原理 3. Barros Nicolas。学习欠阻尼存储器的有效擦除协议 4. Benali Mohamed。腔体中黑洞投射的光轨迹和热阴影 5. Bertin-Johannet Bruno。通过能量过滤接触增加热载流子太阳能电池的提取功率 6. Bossard Elisa。容错无测量位翻转量子存储器的热力学分析 7. Cerisola Federico。由于量子寿命展宽导致的额外擦除成本 8. Chang Derek。多时间量子过程中的信息结构 9. Chowdhury Farhan Tanvir。实现耗散自旋动力学数字量子模拟的挑战 10. Chrirou Chaimae。势垒使量子热电材料具有近乎理想的效率
活性胶体是能够自推进的粒子,能在微观尺度上将化学能转化为定向的机械运动 [1]。它们已成为活性物质领域的典范,因为它们表现出相变 [3] 和动态结晶 [4] 等突发行为 [2],也是研究非平衡微观热机的基础 [5–8]。人们已投入大量精力开发一个框架来理解活性物质,并将其与随机热力学联系起来 [9–13],将经典热力学的概念扩展到非平衡系统和个体轨迹。这种方法的一个普遍局限性是,由于热噪声和活性噪声不能沿轨迹明确分离,因此熵的产生不能完全推断 [14]。尽管如此,随机热力学有潜力推动该领域从研究活性物质的特定现象学模型转向开发驱动活性系统的通用热力学框架。活性物质系统在广泛的空间和时间尺度上无处不在[15–17]。在纳米尺度上,单个分子可以充当活性物质[18, 19];在研究最深入的微观尺度上,生物和合成系统起着活性物质的作用[20–24];在中尺度和更大尺度上,动物[25]、机器人[26]、人类群体[27]等作为活性物质运行。所有这些系统所受控的底层物理过程千差万别,如湿与干[16, 28]、欠阻尼与过阻尼[29–32]、热与非热[33–35]等。然而,它们都有一个重要的共同点——非平衡动力学的出现是因为活性物质系统中的每个元素都会消耗能量并耗散
支持非 STEM 学生在共同授课的天文学入门课中主动学习 Sean Bentley 周日 B1-02 上午 10:12-10:24 量子工程大学预科课程 Jennifer Birriel 周日 D4-01 下午 3:00-3:24 教育 K-16 学生了解光污染 Katherine Black 周二 H3-01 上午 8:00-8:12 在核科学实验室中使用凝胶 Valarie Bogan 周二 H2-02 上午 8:12-8:24 通过 REU 项目扩大参与度 Valarie Bogan 周日 A4-02 上午 9:24-9:48 成为 SuperKnova 上的公民科学家 Caleb Bonyun 周二 I1-03 上午 9:36-9:48 物理很有趣!使用社交媒体进行 STEM 交流 Bob Brazzle 周二 H3-02 8:12 AM-8:24 AM 欠阻尼 LRC 电路中 kHz 范围数字数据的廉价设置 Bill Bridges 周二 I2-02 9:12 AM-9:24 AM 为物理学研究生课程制定部门级留级率 Jed Brody 周日 C3-01 2:00 PM-2:24 PM Grover 搜索算法:面向入门学生的量子计算练习 Juan Burciaga 周日 C1-03 2:24 PM-2:36 PM 本科物理学专业的课程结构 Dan Burns 周一 G6-01 3:30 PM-4:18 PM 手机物理学 - 物理学 1 Dan Burns 周二 H6-01 8:00 AM-8:48 AM 手机物理学 - 物理学 2 Kristine Callan 周日 A2-03 9:24 AM-9:36 AM 实施替代方案高级力学课程的评分策略