本文通过将因果发现与增强学习整合到供应链中的产生供应风险的新颖方法是导致供应链中交付风险的归因。随着供应链的越来越复杂,根本原因分析的传统方法难以捕获各种因素之间的复杂相互关系,通常会导致虚假的相关性和次优决策。我们的方法通过利用因果发现来确定操作变量之间的真正因果关系,并加强学习来迭代地完善因果图。此方法可以准确识别后期交付的关键驱动因素,例如运输模式和交货状态,并提供可行的见解以优化供应链性能。我们将方法应用于现实世界中的供应链数据集,证明了其在揭示交付延迟的根本原因方面的有效性,并提供了缓解这些风险的策略。这些发现对提高运营效率,客户满意度和供应链中的整体盈利能力具有重大意义。
•研究了通过竞争性二聚化网络执行的计算(Cell 2024)。•开发了简单的减少阶模型,用于预测2型糖尿病中的血糖(混乱2023)。•开发了神经系统重症监护病患者和1型糖尿病的重症患者葡萄糖预测的建模和预测方法(《生物学信息学杂志》 2023年)。•将杂种动力学建模框架应用于学习碳水化合物吸收率(Health 2022的神经时间赛)。•设计基于物理的数据驱动的混合模型框架,用于预测动态系统;在离散时间和连续时间(AMS 2022的通信)中,Markovian和非Markovian模型不足。•在集合卡尔曼过滤器中实现了新的状态空间约束,该滤波器通过二次优化形成了约束状态更新(2019年反问题)。
资源缩放是根据需求不断变化的需求调整分配给系统或服务的资源量的过程。对于微服务,可以在不同级别(例如容器,POD或群集)上进行资源缩放。但是,当前的资源缩放方法不够好,因为它们依赖于不考虑微服务的动态和复杂性质的反应性或基于规则的方法。这些方法通常会导致资源过度提供或欠缺,既影响服务质量和成本效率。为了解决这些问题,这项工作着重于测试多种机器学习方法,以优化Kuber-Netes平台的POD尺寸问题,通过预测高度尺寸的用户资源需求。所提出的方法旨在解决标准水平POD Autoscaler(HPA)的局限性,这通常会导致资源浪费或次优性能。结果是有希望的,并且表现出多种ML模型的高精度和性能,以准确预测未来的资源需求。
机器学习,模型可以“忘记”其训练数据的一个子集的能力,在各个领域都具有实际含义。的确,在各种情况下,这种方法可能是无价的,例如消除偏见和保护用户隐私,在这种情况下,将模型撤离(确切的学习)可能在计算上很昂贵或笨拙。我们的目标是基于学生教师模型实施机器,并将其扩展到大型语言模型,例如OpenAI的GPT-2。我们提出了一个受灌木算法启发并适用于LLM的目标函数,试图在指定的忘记设置上学习,同时在其他地方保留绩效。发现了多个有趣的发现:变化的超参数和填充物产生了一个未对准的模型,该模型成功地针对目标函数进行了优化,但其实践中的产生是次优的。其他模型要么泄漏了潜在的不良数据,要么表现出比基线更高的偏差。
摘要:基于模型的强化学习可以有效提高强化学习的样本效率,但是该方法中的环境模型有错误。模型错误可能会误导策略优化,从而导致次优政策。为了提高环境模型的概括能力,现有方法通常使用集合模型或贝叶斯模型来构建环境模型。但是,这些方法在计算密集型和复杂更新。由于生成的模型可以描述环境的随机性质,因此本文提出了一种基于有条件的自动编码器(CVAE)的基于模型的增强学习方法。在本文中,我们使用CVAE来学习与任务相关的表示形式,并应用生成模型来预测环境变化。考虑到多步误差积累的问题,模型适应用于最大程度地减少模拟和真实数据分布之间的差异。此外,该实验证实了所提出的方法可以学习与任务相关的表示并加速政策学习。
传统的抗体优化方法涉及筛选可用序列空间的一小部分,通常会导致候选药物具有次优的结合亲和力、可开发性或免疫原性。基于两种不同的抗体,我们证明,在高通量亲和力数据上训练的深度上下文语言模型可以定量预测未见抗体序列变体的结合。这些变体在很大的突变空间中跨越了三个数量级的 KD 范围。我们的模型显示出强大的上位效应,这凸显了对智能筛选方法的需求。此外,我们引入了“天然性”的建模,这是一种对抗体变体与天然免疫球蛋白的相似性进行评分的指标。我们表明,天然性与药物可开发性和免疫原性的指标有关,并且可以使用遗传算法与结合亲和力一起对其进行优化。这种方法有望加速和改善抗体工程,并可能提高开发新型抗体和相关候选药物的成功率。
摘要 如今,价值模型越来越多地被讨论,作为在工程设计中预先加载概念设计活动的一种手段,其最终目标是降低与从系统角度做出的次优决策相关的成本和返工。然而,研究界对于价值模型到底是什么、有多少种类型的价值模型、它们的输入输出关系以及它们在工程设计过程时间线上的使用情况并没有达成共识。本文基于在航空航天和建筑设备行业进行的五个案例研究,介绍了如何在工程设计过程中定制价值模型的开发。最初的描述性研究结果以七个经验教训的形式总结出来,在设计用于设计决策支持的价值模型时应予以考虑。从这些经验教训中,本文提出了一个六步框架,该框架考虑了在获得新信息时更新价值模型的性质和定义的必要性,从基于专家判断的初步估计转向详细的定量分析。
常规数据分析通常无法捕获添加剂制造(AM)过程的复杂背景,从而导致尖锐的解决方案和次优的分析结果。生成人工智能(Genai)模型(例如大语言模型(LLM))的性能在很大程度上取决于它们整合和背景培训的大量数据的能力。但是,情境化通常是由消耗的数据直接驱动的,而不一定基于基本真理。为了解决这个问题,提出了一种基于本体的检索增强发电(RAG)方法,以增强Genai产生相关提示和答案的能力。Genai通过利用结构的本体论来识别和应用相关背景,从而产生准确而有见地的解释。用例展示了拟议的基于本体的RAG框架如何运作以提供上下文感知的AM数据分析,这些数据分析可以通过执行AM数据分析时通过基本真理来促进分析透明度。
摘要 - 使用加密信号检测攻击是具有挑战性的,因为加密隐藏了其信息内容。我们提出了一种新的机制,用于在不使用解密,安全通道和复杂通信方案的情况下使用错误(LWE)加密信号进行学习的新型机制。相反,检测器利用LWE加密的同态特性来对加密样品的转换进行假设检验。特权转换是通过解决基于硬晶格的最小化问题的解决方案来确定的。虽然测试的敏感性会因次优溶液而恶化,类似于打破加密系统的(相关)测试的指数恶化,但我们表明该劣化对于我们的测试是多项式的。可以利用此速率差距来选择导致加密较弱但检测能力的较大收益的参数。最后,我们通过提供一个数值示例来结束论文,该示例模拟异常检测,证明了我们方法在识别攻击方面的有效性。
干细胞的应用已从治疗干预措施到更常规的筛查和体外建模,但是每个人的显着局限性是由于数十年来旧的单层方案缺乏成熟度所致。尽管这些方法仍然是“黄金标准”,但与工程生态位相结合时,较新的三维方法将显着提高细胞成熟度并启用新应用。在这里,我们首先讨论过去的方法,以及为什么我们认为这些方法产生了次优的心肌细胞。第二,我们注意到较新的方法是如何将其移动到细胞机械,电气和生物成熟度的时代。最后,我们强调了这些改进将如何解决规模和植入问题以产生临床成功。我们的结论是,只有通过各种细胞种群和工程生态位的结合,我们才能创建一个具有成熟度和脉管系统的工程心脏组织,以成功地整合到宿主中。