虽然有些植物是从大自然中收集的,但有些是培养和生产的。但是,用于治疗目的的植物的很大一部分是从大自然中收集的。药物和芳香植物的最引人注目和研究的特征是其用于治疗目的。在世界许多国家,尤其是在不发达的国家中使用植物的治疗,诸如传统待遇,互补疗法,自然疗法等不同的名称。与工业的许多不同领域和分支在许多不同领域和分支中的药用和芳香植物的消费同时,这些植物的贸易量正在日益增加。随着贸易量的增长和需求的增长,增加药用植物生产机会的努力也在加速。随着贸易量的增长和需求的增长,增加药用植物生产机会的努力也在加速。
抽象的一种免疫系统改善和增强免疫功能的吉祥策略是免疫调节疗法,可以帮助恢复免疫力平衡。今天由于免疫疾病和新病毒疾病的日益增长的趋势以及癌症发病率的增加,因此需要更高的需求产生具有更大功效和更少副作用的免疫调节化合物。细菌衍生物是发现许多具有各种医学特性的新化合物的非常肥沃的基础。来自次生代谢产物等细菌来源的许多天然产品都具有有希望的免疫调节活性,这代表了该主题在药物发现中的重要性和价值,并且显然需要在该领域进行研究的一致来源。这篇综述的目的是强调对细菌次级代谢产物和自然免疫调节剂的免疫调节作用的工作。关键字:免疫调节剂;免疫调节;细菌次生代谢物;微生物二级代谢物
植物产生多种次生代谢产物,这些产物对植物的主要功能(如生长、防御、适应或繁殖)起着至关重要的作用。一些植物次生代谢产物可作为营养品和药物对人类有益。代谢途径及其调控机制对于靶向代谢物工程至关重要。成簇的规律间隔短回文重复序列 (CRISPR)/Cas9 介导的系统已广泛应用于基因组编辑,具有高精度、高效率和多重靶向能力。除了在遗传改良中的广泛应用外,该技术还促进了与涉及各种植物次生代谢途径的基因发现相关的功能基因组学的全面分析方法。尽管应用广泛,但仍有几个挑战限制了 CRISPR/Cas 系统在植物基因组编辑中的适用性。本综述重点介绍了 CRISPR/Cas 系统介导的植物代谢工程的最新应用及其挑战。
自然灾害领域中一个很少研究的问题是洪水对危险材料的二次影响。洪水期间,可能会发生危险材料事故,但由于担心主要灾害影响,这些事故可能会被忽视。这些事故可能以各种方式发生。旧的危险材料“倾倒”地点可能会被破坏,化学物质可能会被洪水扩散。储存危险材料(例如汽油或石油供应)的地下储罐的完整性也可能构成威胁。储存的化学品或废物桶可以通过简单地漂走而移动,由于许多这些容器没有标签,它们可能构成未知级别的危险。在冲击后时期可能会出现意想不到的危险材料问题。Lafornara 等人(1978 年)在他们关于约翰斯敦洪水的研究中引用了此类危害。他们表明,如果食品配送设施的制冷系统出现故障,它们可能会面临高细菌数量和危险化学品。气体可能会聚集在该区域,从而引起爆炸。储存化学品的商业机构和家庭构成了另一种威胁。容器可能在洪水中受损,导致其中的物品泄漏并与其他化学品混合。此外,破裂的储罐或管道中的气体可能会积聚在下水道系统中并引起爆炸。
1 克尔曼沙赫医科大学健康研究所药学科学研究中心,克尔曼沙赫 6734667149,伊朗; sajad.fakhri@kums.ac.ir 2 克尔曼沙赫医科大学学生研究委员会,克尔曼沙赫 6734667149,伊朗; abdian.ph@gmail.com (南非); Nazanin.Zarneshan75@gmail.com (SNZ) 3 加齐大学药学院生药学系,06330 安卡拉,土耳其; esrak@gazi.edu.tr 4 圣地亚哥德孔波斯特拉大学药学院有机化学系,15782圣地亚哥德孔波斯特拉,西班牙 5 智利中央大学健康科学学院研究生研究学院,智利圣地亚哥 8053.com(MHF); e.sobarzo@usc.es 或 eduardo.sobarzo@ucentral.cl (ES-S.)† 这些作者对这项工作做出了同等贡献。
摘要:胆汁酸代谢是肠道菌群调节的关键途径。peptaceTobacter(梭状芽胞杆菌)Hiranonis被描述为负责将原发性转化为狗中二次粪便未结合的胆汁酸(FUBA)的主要物种。该多步生物化学途径由胆汁酸诱导(BAI)操纵子编码。我们的目的是评估海藻链球菌的丰度,一个特定基因(BAICD)(BAICD)的丰度和次级FUBA浓度之间的相关性。在这项回顾性研究中,分析了24只狗的133个粪便样品。使用qPCR确定了海藻假单胞菌和BAICD的丰度。通过气相色谱 - 质谱法测量FUBA的浓度。BAICD丰度与次级Fuba(ρ= 0.7377,95%CI(0.6461,0.8084)),p <0.0001)表现出很强的正相关。类似地,海藻和次级fuba之间存在很强的相关性(ρ= 0.6658,95%CI(0.5555,0.7532),p <0.0001)。未观察到表现出FUBA转化和缺乏Hiranonis的动物。这些结果表明,海藻链球菌是狗中原发性胆汁酸的主要转换器。
摘要:与它们在各种环境和生态系统中的广泛发生有关,通常与昆虫有关的真菌。除了某些情况下可能意味着相互关系外,还研究了这种共生的相互作用,以鉴于其在虫害控制的环保策略中可能的利用,以验证昆虫病的潜力。这种观点依赖于昆虫病的假设通常是由真菌产物介导的,而青霉物种是著名的生物活性次生代谢产物。的确,在过去几十年中,已经鉴定出了大量的新化合物并从这些真菌中进行了特征,在本文中审查了虫害管理中的特性和可能的应用。
本研究调查了受切蚀影响的支流植被次级水道的水文和沉积机制:卢瓦尔河(法国)。在 2000 年至 2003 年发生的洪水事件期间和之后,对位于 Bre´he´mont 研究地点(源头下游 790 公里)的植被次级水道进行了观察和测量。使用低海拔航空照片、地形和水深测量以及冲刷链分析了形态变化和沉积物动态。还通过在不同洪水阶段对流速和流向进行的测量分析了水道的水力行为。为了量化木本植被对水流阻力的影响,根据现场测量确定了树带的粗糙度。护岸层破坏对推移质脉冲的影响、单次洪水事件期间沉积过程的变化以及植被对床形的固定均被确定为影响研究水道行为的关键过程。地形调查表明,水道上游部分的沉积物动力学相当显著,并且沉积物预算根据考虑的时间尺度而不同。此外,还展示了次级水道的不对称行为:植被区沉积和保存的沉积物数量减少,与三级水道中观察到的物质旁路形成鲜明对比。流速和流向测量表明,这些参数随水位和水道的形态单元(水池、浅滩、植被区)而变化。在低流量期间,次级水道的冲刷和颗粒输出是卢瓦尔河主水道沉积物供应减少的结果。对于这些水位,沉积发生在速度和湍流减少的池中,而三级通道受到侵蚀。在高流量期间,主通道中可用的大量沉积物会流入次级通道中由浅滩和沙洲形成的临时储存区。位于次级通道下游的植被区在低流量时使细流偏转,并在高水位时降低流速。在该区域观察到的沉积物增生对流动和沉积过程产生反馈。D 2005 Elsevier B.V. 保留所有权利。
尽管抗病毒药物开发已经增长,并且疫苗已经可以访问,但仍需要具有成本效益且易于适用的治疗方法来打击Covid-19 [13]。可以口服或通过吸入来施用广谱冠状病毒抑制剂,可能在处理新兴的SARS-COV-2变体方面起着至关重要的作用[13]。这种疗法将对未来的致病性冠状病毒的爆发的准备将是极大的[13]。响应于199的大流行,已经对SARS – COV-2蛋白质和病毒细胞蛋白复合物的结构特性进行了许多研究,以找到治疗性干预措施的潜在靶标[14]。尖峰蛋白,主蛋白酶(MPRO),木瓜样蛋白酶(PLPRO)和RNA-脱纤维RNA聚合酶(RDRP)是最深入研究的药理靶标[14]。通常,针对